The volume that will occupy at STP is calculated as follows
by use of ideal gas equation
that is PV=nRT where n is number of moles calculate number of moles
n= PV/RT
p=0.75 atm
V=6.0 L
R = 0.0821 L.atm/k.mol
T= 35 +273= 308k
n=?
n= (o.75 atm x 6.0 L)/( 0.0821 L.atm/k.mol x 308 k)= 0.178 moles
Agt STP 1 mole= 22.4 L what obout 0.178 moles
= 22.4 x0.178moles/ 1moles =3.98 L( answer C)
Answer:
Correct option is
B
5 liters of CH
4
(g)NO
2
at STP
No. of molecules=
22.4
5
mol=
22.4
5
×N
A
molecules
A) 5ℊ of H
2
(g)
No. of moles=
2
5
mol=
2
5
×N
A
molecules
B) 5l of CH
4
(g)
No. of moles of CH
4
=
22.4
5
mol=
22.4
5
N
A
molecules
C) 5 mol of O
2
=5N
A
O
2
molecules
D) 5×10
23
molecules of CO
2
(g)
Molecules of 5l NO
2
(g) at STP=5l of CH
4
(g) molecules at STP
Therefore, option B is correct.
4V is the necessary voltage to power the electrolysis of molten sodium chloride.
To create sodium metal and chlorine gas, molten (liquid) sodium chloride can be electrolyzed. A Down's cell is the name of the electrolytic cell utilised in the procedure. The liquid sodium ions in a Down's cell are converted to liquid sodium metal at the cathode. Liquid chlorine ions are oxidised to chlorine gas at the anode. Below is an illustration of the reactions and cell potentials:
oxidation:
→
+
E°= -1.36V
reduction:
→
E°= -2.71V
overall :
→
E°
= -4.07V
For this electrolysis to take place, the battery needs to supply more than 4 volts. The only means to obtain pure sodium metal is by this reaction, which also serves as a significant source of chlorine gas generation. Swimming pools and other surfaces are frequently cleaned and disinfected with chlorine gas.
Learn more about sodium chloride here;
brainly.com/question/9811771
#SPJ4
Catenation is the property by which it can make bonds with other carbon<span> atoms to form long chains. Hence, </span>carbon<span>, with the least diffuse valence shell p orbital is capable of forming longer p-p sigma bonded chains of atoms than heavier elements which bond via higher valence shell orbitals.</span>