Answer:
False
Explanation:
It is psychological for you do not depend on it to live.
PH = 0.1289<span> for </span>1.50<span> M solution of weak acid with Ka value of </span><span>.73</span>
The volume of titanium with mass of 0. 10g and density of 4. 51 g/cm³ is 0. 02 cm³
<h3>
What is volume?</h3>
Volume is known to be equal to the mass divided by the density.
It is written thus:
Volume = Mass / density
<h3>
How to calculate the volume</h3>
The volume is calculated using the formula:
Volume = mass ÷ density
Given the mass = 0. 10g
Density = 4.51 g/cm³
Substitute the values into the formula
Volume of titanium = 0. 10 ÷ 4.51 = 0. 02 cm³
Thus, the volume of titanium with mass of 0. 10g and density of 4. 51 g/cm³ is 0. 02 cm³
Learn more about volume here:
brainly.com/question/1762479
#SPJ1
Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
Answer:
The correct option is: (D) -2.4 kJ/mol
Explanation:
<u>Chemical reaction involved</u>: 2PG ↔ PEP
Given: The standard Gibb's free energy change: ΔG° = +1.7 kJ/mol
Temperature: T = 37° C = 37 + 273.15 = 310.15 K (∵ 0°C = 273.15K)
Gas constant: R = 8.314 J/(K·mol) = 8.314 × 10⁻³ kJ/(K·mol) (∵ 1 kJ = 1000 J)
Reactant concentration: 2PG = 0.5 mM
Product concentration: PEP = 0.1 mM
Reaction quotient: ![Q_{r} =\frac{\left [ PEP \right ]}{\left [ 2PG \right ]} = \frac{0.1 mM}{0.5 mM} = 0.2](https://tex.z-dn.net/?f=Q_%7Br%7D%20%3D%5Cfrac%7B%5Cleft%20%5B%20PEP%20%5Cright%20%5D%7D%7B%5Cleft%20%5B%202PG%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B0.1%20mM%7D%7B0.5%20mM%7D%20%3D%200.2)
<u>To find out the Gibb's free energy change at 37° C (310.15 K), we use the equation:</u>

![\Delta G = 1.7 kJ/mol + [2.303 \times (8.314 \times 10^{-3} kJ/(K.mol))\times (310.15 K)] log (0.2)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20kJ%2Fmol%20%2B%20%5B2.303%20%5Ctimes%20%288.314%20%5Ctimes%2010%5E%7B-3%7D%20kJ%2F%28K.mol%29%29%5Ctimes%20%28310.15%20K%29%5D%20log%20%280.2%29)
![\Delta G = 1.7 + [5.938] \times (-0.699) = 1.7 - 4.15 = (-2.45 kJ/mol)](https://tex.z-dn.net/?f=%5CDelta%20G%20%3D%201.7%20%2B%20%5B5.938%5D%20%5Ctimes%20%28-0.699%29%20%3D%201.7%20-%204.15%20%3D%20%28-2.45%20kJ%2Fmol%29)
<u>Therefore, the Gibb's free energy change at 37° C (310.15 K): </u><u>ΔG = (-2.45 kJ/mol)</u>