Answer:
Imma just say acids have more acidity and bases have lower acidity...
Answer:
bdndbdjdbdjdbdjdbsidbdidbsjsbsisbsidbd
Given :
A 250 ml beaker weighs 13.473 g .
The same beaker plus 2.2 ml of water weighs 15.346 g.
To Find :
How much does the 2.2 ml of water, alone, weigh .
Solution :
Now, mass of water is given by :

Therefore , mass of 2.2 ml of water alone is 1.873 g .
Hence , this is the required solution .
<span>First, write the net ionic equation for the unbalanced reaction. If you are given a word equation to balance, you'll need to be able to identify strong electrolytes, weak electrolytes and insoluble compounds. Strong electrolytes completely dissociate into their ions in water. Examples of strong electrolytes are strong acids, strong bases, and soluble salts. Weak electrolytes yield very few ions in solution, so they are represented by their molecular formula (not written as ions). Water, weak acids, and weak bases are examples of weak electrolytes. The pH of a solution can cause them to dissociate, but in those situations, you'll be presented an ionic equation, not a word problem. Insoluble compounds do not dissociate into ions, so they are represented by the molecular formula. A table is provided to help you determine whether or not a chemical is soluble, but it's a good idea to memorize the solubility rules.
</span><span><span>arate the net ionic equation into the two half-reactions. This means identifying and separating the reaction into an oxidation half-reaction and a reduction half-reaction. </span><span>For one of the half-reactions, balance the atoms except for O and H. You want the same number of atoms of each element on each side of the equation. </span><span>Repeat this with the other half-reaction. </span><span>Add H2O to balance the O atoms. Add H+ to balance the H atoms. The atoms (mass) should balance out now. </span><span>Now balance charge. Add e- (electrons) to one side of each half-reaction to balance charge. You may need to multiply the electrons the the two half-reactions to get the charge to balance out. It's fine to change coefficients as long as you change them on both sides of the equation. </span><span>Now, add the two half-reactions together. Inspect the final equation to make sure it is balanced. Electrons on both sides of the ionic equation must cancel out. </span><span>Double-check your work! Make sure there are equal numbers of each type of atom on both sides of the equation. Make sure the overall charge is the same on both sides of the ionic equation. </span><span>If the reaction takes place in a basic solution, add an equal number of OH- as you have H+ ions. Do this for both sides of the equation and combine H+ and OH- ions to form H2O. </span><span>Be sure to indicate the state of each species. Indicate solid with (s), liquid for (l), gas with (g), and aqueous solution with (aq). </span><span>Remember, a balanced net ionic equation only describes chemical species that participate in the reaction. Drop additional substances from the equation.ExampleThe net ionic equation for the reaction you get mixing 1 M HCl and 1 M NaOH is:H+(aq) + OH-(aq) → H2O(l)Even though sodium and chlorine exist in the reaction, the Cl- and Na+ ions are not written in the net ionic equation because they don't participate in the reaction.</span></span>
- Compounds are formed when two or more <u>elements</u> are chemically combined.
- When these elements are <u>chemically</u> combined, a new substance is formed with new chemical and physical <u>properties</u>.
- An element is a <u>pure</u> substance that cannot be separated into simpler substances by <u>physical</u> or chemical means.
- A compound is two or more elements <u>combined</u> chemically to produce a new substance.
- When two or more elements chemically combine, the compound has new properties, different from the chemical and physical properties of the <u>original</u> elements.
<h3>What is a chemical element?</h3>
A chemical element can be defined as a pure substance which comprises atoms that have the same atomic number (number of protons) in its nuclei and as such it is the primary constituent of matter.
Generally, some examples of a chemical element include the following:
- Argon.
- Sodium.
- Carbon.
- Oxygen.
- Hydrogen.
- Phosphorus
- Copper
- Aluminum
- Potassium
- Magnesium
<h3>What is a pure substance?</h3>
A pure substance can be defined as a single sample of matter that cannot be separated into other kinds of matter through the use of any physical or chemical separating technique because it has distinct chemical properties and a definite and constant composition.
Read more on pure substances here: brainly.com/question/2056940
#SPJ1