Conduction. Any material that easily allows heat to move through it. Vacuum. A region of space that contains no matter. Solid.
Answer:
6.04788 in

78.38779 m/s
0.88159 kg
34.55294 J
Explanation:
Circumference is given by

Diameter is given by
The diameter is 6.04788 in

Volume of sphere is given by
The volume is 

Fall velocity is given by
The velocity of the fall will be 78.38779 m/s
Mass is given by


The mass is 0.88159 kg
Kinetic energy is given by

The kinetic energy is 34.55294 J
Explanation:
d) Magnetic force is the power that pulls materials together (magnet e. g iron)
an example :how magnet can pick up a coin.
e) frictional force produces when two surfaces are in contact with each other.
effects of friction : I) it produces heat
II) it causes loss in power.
Hello!
This is an example of an inelastic collision, where the two objects "stick" to each other after their collision. (The Goalkeeper CATCHES the puck).
We can write out the conservation of momentum formula:
m1vi + m2vi = m1vf + m2vf
Let:
m1 = mass of puck
m2 = mass of the goalkeeper
We know that the initial velocity of the goalkeeper is 0, so:
m1vi + m2(0) = m1vf + m2vf
m1vi = m1vf + m2vf
The final velocities will be the same, so:
m1vi = (m1 + m2)vf
Plug in the given values:
(0.16)(40)/ (0.16 + 120) = vf ≈ 0.0533 m/s
Using the equation for momentum:
p = mv
The object with the LARGER mass will have the greater momentum. Thus, the Goalkeeper has the largest momentum as p = mv; a greater mass correlates to a greater momentum since the velocity is the same between the two objects. The puck would have a momentum of p = (.16)(0.0533) = 0.008528 kgm/s, whereas the goalkeeper would have a momentum of
p = (120)(0.0533) = 6.396 kgm/s.