Answer:

Explanation:
The cabinet does not move: this means that the net force acting on it is zero.
Along the horizontal direction, we have two forces:
- The push exerted by Bob, F = 200 N, forward
- The frictional force,
, which acts in the opposite direction (backward)
Since the net force must be zero, we have:

So solving the equation we can find the magnitude of the friction force:

Answer: 15.6 metres
Explanation:
Given that:
length of wave (λ)= ?
Frequency of wave F = 28 Hertz
Speed of wave (V) = 437 m/s
The wavelength is the distance covered by the wave in one complete cycle. It is measured in metres, and represented by the symbol λ.
So, apply V = F λ
Make λ the subject formula
λ = V / F
λ = 437 m/s / 28 Hertz
λ = 15.6 m
Thus, the length of the wave is 15.6 metres
Answer:
The coefficient of static friction between your partner and the floor is 0.55
Explanation:
Given:
Mass
Kg
Frictional force
N
From the formula of frictional force,

Where
coefficient of static friction, 
Put the above values and find the coefficient of static friction.


Therefore, the coefficient of static friction between your partner and the floor is 0.55
Answer: yes the reading changes,
And a scale reads pressure not force
Explanation:
Answer:
C
Explanation:
Power is work divided by time:
P = W / t
Work is force times distance:
W = F d
Therefore:
P = F d / t
Given that F = 500 N, d = 60 m, and t = 240 s:
P = 500 N * 60 m / 240 s
P = 125 W
Answer is C.