Answer:
Explanation:
Given that, .
Pressure around scuba is
P = 10^5 Pa
1 Pa = 1 N/m²
Then
P = 10^5 N/m²
Descending height
h = 10m
Change in force per unit square centimetre
We know that,
Pressure = Force / Area
Then,
Force / Area is the required question we are finding
Then,
Force / Area = 10^5 N / m²
So, let convert the m² to cm²
100cm = 1m
(100cm)² = (1m)²
10⁴cm² = 1m²
Then,
Force / Area = 10^5 N/m² × 1m² / 10⁴cm²
Force / Area = 10 N/cm²
So, the force per unit square centimeters is 10.
Answer:
going to work my way down
Troposphere
contains weather
contains life forms
stratosphere
contains ozone layer
mesosphere
where asteroids burn up
very low temps
thermosphere
widely varying temps
exosphere
almost no molecules
Explanation:
Answer:
39.2m/s
Explanation:
The potential energy the book has right before it falls is equal to the kinetic energy in falling.
PE = KE
mgh = (1/2)mv
2gh=v
v=(2)(9.81)(2)
v=39.24m/s
It’s because conductors have nearly zero resistance to the flow of electrons that go through them. This leaves the electrons free to move and current can travel with full strength.
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.