1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
10

At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does

the potential difference across the resistor compare to the emf across the coil? (Enter your answers in V.) resistor V coil V (b) Answer the same question about the circuit several seconds later. (Enter your answers in V.) resistor V coil V (c) Is there an instant at which these two voltages are equal in magnitude? Yes No (d) If so, when? Is there more than one such instant? (Enter all possible times in ms as a comma-separated list. If there are no such instants, enter NONE.) ms (e) After a 3.20 A current is established in the resistor and coil, the battery is suddenly replaced by a short circuit. Answer questions (a) and (b) again with reference to this new circuit. (Enter your answers in V.) immediately thereafter several seconds later resistor V V Need Help?
Physics
1 answer:
insens350 [35]3 years ago
7 0

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

You might be interested in
Determine the total moment of inertia of a merry-go round with 5 children sitting on it. Of the five children, four are seated a
BaLLatris [955]

Answer:

Explanation:

Given that,

We have five children.

Each of mass m =30kg

They sit on a merry go round

Mass of Merry go round M= 150kg

Radius of Merry go round is r =2m

Four children sit at the edge of the merry go round but one child sit at the centre.

The four child that sit at the edge are 2m from the centre of the merry go round but the one at the centre is 0m from the centre

Moment of inertia?

Moment of inertia is given as

I=Σmi•ri²

For the question, the moment of inertia is the combination of inertial of child and the merry go round

I= I(merry go round) + I(four child)+ I(last child)

The merry go round is assumed to be a solid cylinder, so it is going to have the moment of inertia of solid cylinder

Then,

I(merry go round ) =½ Mr²

Also, Four of the child has the same moment of inertia, they are 2m form the centre of the merry go round why the last child has no moment of inertia

I= I(merry go round) + I(four child) +I(last child )

I= ½Mr² + 4mr² + mr'²

I = ½ × 150 ×2² + 4×30×2² + 30×0²

I = 300 +480+0

I = 780 kgm²

7 0
3 years ago
When learning a new exercise what is the first thing you should focus on?
Brums [2.3K]

Answer:

If your form is correct (b)

3 0
2 years ago
Read 2 more answers
If you travel at 3 m/s for 12 seconds, how far did you travel?
ella [17]

Answer:

V=3 m/s

t=12 seconds

S=?

S=V×t

S=3×12

S=36meters

So distance you travel is 36meters.

4 0
2 years ago
Read 2 more answers
Why is this event important to include in the biography?
nadya68 [22]

Answer:

D: It shows that Frida Kahlo used art to cope with her pain.

Explanation:

Within the text given it shows her emotions being lonely, immobile and in pain. But it all shows her asking her father for art which states that art is her sort of relief and happy place.

8 0
2 years ago
Read 2 more answers
An ideal spring with spring constant k is hung from the ceiling. The initial length of the spring, with nothing attached to the
hram777 [196]

The mass m of the object = 5.25 kg

<h3>Further explanation</h3>

Given

k = spring constant = 3.5 N/cm

Δx= 30 cm - 15 cm = 15 cm

Required

the mass m

Solution

F=m.g

Hooke's Law

F = k.Δx

\tt m.g=k.\Delta x\\\\m.10=3.5\times 15\\\\m=5.25~kg

7 0
2 years ago
Other questions:
  • Is FeN compound ironic or covalent? how do you know?
    12·1 answer
  • How many miles is the moon from the earth
    11·1 answer
  • 43.278 kg - 28.1 g use significant figures rule
    8·1 answer
  • Which of the following is an explanation of how the natural world works, based on experimentation?
    13·2 answers
  • A person is using a rope to lower a 5.0-n bucket into a well with a constant speed of 2.0 m/s. What is the magnitude of the forc
    6·2 answers
  • 25 Pts. - URGENT
    14·1 answer
  • The number of energy levels to which an electron can jump depends on the
    11·1 answer
  • What is the frequency if 140 waves pass in 2 minutes?
    9·1 answer
  • The Tambora volcano on the island of Sumbawa, Indonesia has been known to throw ash into the air with a speed of 625 m/s during
    9·1 answer
  • The amount of force applied to an object multiplied by time is
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!