Answer:
the distance in meters traveled by a point outside the rim is 157.1 m
Explanation:
Given;
radius of the disk, r = 50 cm = 0.5 m
angular speed of the disk, ω = 100 rpm
time of motion, t = 30 s
The distance in meters traveled by a point outside the rim is calculated as follows;

Therefore, the distance in meters traveled by a point outside the rim is 157.1 m
Since the electron dropped from an energy level i to the ground state by emitting a single photon, this photon has an energy of 1.41 × 10⁻¹⁸ Joules.
<h3>How to calculate the photon energy?</h3>
In order to determine the photon energy of an electron, you should apply Planck-Einstein's equation.
Mathematically, the Planck-Einstein equation can be calculated by using this formula:
E = hf
<u>Where:</u>
In this scenario, this photon has an energy of 1.41 × 10⁻¹⁸ Joules because the electron dropped from an energy level i to the ground state by emitting a single photon.
Read more on photons here: brainly.com/question/9655595
#SPJ1
Answer:
which pic...? there is no picture attached to your question
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore
The equilibrant force of the two given forces is 14.14 N.
<h3 /><h3 /><h3>What is equilibrant force?</h3>
- This is a single force that balances other given forces.
The given parameters:
- First force, F₁ = 10 N
- Second force, F₂ = 10 N
- Angle between the forces, θ = 90⁰
The equilibrant force of the two given forces is calculated as follows;

Thus, the equilibrant force of the two given forces is 14.14 N.
Learn more about equilibrant force here: brainly.com/question/8045102