The answer for the following answer is answered below.
- <u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
- <u><em>Therefore the option for the answer is "B".</em></u>
Explanation:
Frequency (f):
The number of waves that pass a fixed place in a given amount of time.
The SI unit of frequency is Hertz (Hz)
Time period (T):
The time taken for one complete cycle of vibration to pass a given point.
The SI unit of time period is seconds (s)
Given:
frequency (f) = 100 Hz
wavelength (λ) = 2.0 m
To calculate:
Time period (T)
We know;
According to the formula;
<u>f =</u>
<u></u>
Where,
f represents the frequency
T represents the time period
from the formula;
T = 
T = 
T = 0.01 seconds
<u><em>Therefore the time period of the wave is 0.01 seconds.</em></u>
Answer:
2,500 watts
Explanation:
I got this answer right on a test. I hope it works for you to.
Answer:

Explanation:
We can use the following kinematics equations to solve this problem:
.
Using the first one to solve for acceleration:
.
Now we can use the second equation to solve for the distance travelled by the airplane:
(three significant figures).
Answer:
I'd say taco bell is a better deal, because you get more tacos.
Explanation:
but that's just what I think