Answer:
a = 2.72 [m/s2]
Explanation:
To solve this problem we must use the following kinematics equation:

where:
Vf = final velocity = 1200 [km/h]
Vo = initial velocity = 25 [km/h]
t = time = 2 [min] = 2/60 = 0.0333 [h]
1200 = 25 + (a*0.0333)
a = 35250.35 [km/h2]
if we convert these units to units of meters per second squared
![35250.35[\frac{km}{h^{2} }]*(\frac{1}{3600^{2} })*[\frac{h^{2} }{s^{2} } ]*(\frac{1000}{1} )*[\frac{m}{km} ] = 2.72 [\frac{m}{s^{2} } ]](https://tex.z-dn.net/?f=35250.35%5B%5Cfrac%7Bkm%7D%7Bh%5E%7B2%7D%20%7D%5D%2A%28%5Cfrac%7B1%7D%7B3600%5E%7B2%7D%20%7D%29%2A%5B%5Cfrac%7Bh%5E%7B2%7D%20%7D%7Bs%5E%7B2%7D%20%7D%20%5D%2A%28%5Cfrac%7B1000%7D%7B1%7D%20%29%2A%5B%5Cfrac%7Bm%7D%7Bkm%7D%20%5D%20%3D%202.72%20%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D)
It desolves calcium carbonate causing plates to bend and faults to occur. Faults and plates moving cases the formation of caves.
-Hopes this helps :)
Answer;
C. The brightness of each bulb would remain the same even though the total resistance of the circuit would decrease.
Explanation;
-If light bulbs are connected in parallel to a voltage source, the brightness of the individual bulbs remains more-or-less constant as more and more bulbs are added to the circuit.
-The current increases as more bulbs are added to the circuit and the overall resistance decreases. In addition, if one bulb is removed from the circuit the other bulbs do not go out. Each bulb is independently linked to the voltage source
bvcdbcvfdnbgfbjdgfhdgfjghfjhvjbczdfsghdfshjdgfhdftgh
The velocity vector of the planet points toward the center of the circle is the following is true about a planet orbiting a star in uniform circular motion.
A. The velocity vector of the planet points toward the center of the circle.
<u>Explanation:</u>
Motion of the planet around the star is mentioned to be uniform and around a circular path. Objects in uniform circular motion motion has constant angular speed but the velocity of the object will not remain constant. Since the planet is in circular motion the direction of velocity vector at a particular point is tangential to the circular path at that particular point.
Thus at every point, the direction of velocity vector changes and this means the velocity is never constant. The objects in uniform circular motion has centripetal acceleration which means that velocity vector of the planet points toward the center of the circle.