Answer:
statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.
Explanation:
The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.
The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction
here, the downward direction signifies the downward motion parallel to the inclined plane.
Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.
Hence, for the block to stop sliding the the above statement should be true.
Answer:
Power = 0.33 Watts
Explanation:
Given the following data;
Distance = 1m
Force = 20N
First of all, we would solve for the work done by the boy.
Workdone = force * distance
Substituting into the equation, we have;
Workdone = 20*1 = 20J
Now to find power;
Power = workdone/time
Power = 20/60
Power = 0.33 Watts.
Answer:
Energy is transferred from Priya to the box.
Explanation:
Pls mark as brainliest
Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
![E_{M}=E_{p} + E_{k} \\E_{p} = potential energy [J]\\E_{k} = kinetic energy [J]\\where:\\E_{p} =m*g*h\\E_{p} = 4*9.81*0.5=19.62[J]\\E_{k}=\frac{1}{2} *m*v^{2} \\E_{k}=\frac{1}{2} *4*(3)^{2} \\E_{k}=18[J]\\Therefore\\E_{M} =18+19.62\\E_{M}=37.62[J]](https://tex.z-dn.net/?f=E_%7BM%7D%3DE_%7Bp%7D%20%20%2B%20E_%7Bk%7D%20%5C%5CE_%7Bp%7D%20%3D%20potential%20energy%20%5BJ%5D%5C%5CE_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%20%3D%204%2A9.81%2A0.5%3D19.62%5BJ%5D%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2A4%2A%283%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D18%5BJ%5D%5C%5CTherefore%5C%5CE_%7BM%7D%20%3D18%2B19.62%5C%5CE_%7BM%7D%3D37.62%5BJ%5D)
All this energy will become kinetic energy and we can find the velocity.
![37.62=\frac{1}{2} *m*v^{2} \\v=\sqrt{\frac{37.62*2}{4} } \\v=4.33[m/s]](https://tex.z-dn.net/?f=37.62%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B37.62%2A2%7D%7B4%7D%20%7D%20%5C%5Cv%3D4.33%5Bm%2Fs%5D)