The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
Answer:

Explanation:
= Velocity of one lump = 
= Velocity of the other lump = 
m = Mass of each lump = 
The collision is perfectly inelastic as the lumps stick to each other so we have the relation

The velocity of the stuck-together lump just after the collision is
.
Answer:
27.22 m/s
Explanation:
Let the speed of clay before impact is u.
the speed of clay and target is v after impact.
use conservation of momentum
momentum before impact momentum after impact
mass of clay x u = (mass of clay + mass of target) x v
100 x u = (100 + 500) x v
u = 6 v .....(1)
distance, s = 2.1 m
μ = 0.5
final velocity is zero. use third equation of motion
v'² = v² + 2as
0 = v² - 2 x μ x g x s
v² = 2 x 0.5 x 9.8 x 2.1 = 20.58
v = 4.54 m/s
so by equation (1)
u = 6 x 4.54 = 27.22 m/s
thus, the speed of clay before impact is 27.22 m/s.
Molecules of liquid are far away from each other but less compared to gas. Liquid has the ability to flow. Liquid molecules can move. Liquid occupies the shape of the container. Thus, they do not have fixed shape. Liquid has fixed volume because they are not compressible(easily)