1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
5

A boy pushes a 50 kilogram wagon with a force of 4 N east while an orangutan pushes the wagon

Physics
1 answer:
ladessa [460]3 years ago
6 0
The wagon does not move
You might be interested in
A speed-time graph is shown below:
Juliette [100K]

Answer:

It traveled 4 centimeters.

Explanation:

In a speed versus time graph, the distance travelled is given by the area under the graph.

In this graph we have the following:

- The speed of the object is v = 1 cm/s between time t = 0 s and t = 4 s

- The speed of the object is v = 0 cm/s between time t = 4 s and t = 8 s

Since the speed in the second part is zero, the distance travelled in the second part is zero. So, the only distance travelled by the object is the distance travelled during the first part, which is equal to the area of the first rectangle:

d=v\Delta t=(1)(4-0)=4 cm

4 0
3 years ago
A technician at a semiconductor facility is using an oscilloscope to measure the AC voltage across a resistor in a circuit. The
d1i1m1o1n [39]

Answer:

The value to be reported is 5.48V

Explanation:

The RMS (root mean square) is defined as the value of voltage that will produce the same heating effect, or power dissipation, in circuit, as this AC voltage.

The RMS voltage is also called effective voltage because it is just as effective as DC voltage in providing power to an element.

It is expressed as V_{rms} = \frac{V_{m} }{\sqrt{2} }

where Vm is the maximum or peak value of the voltage

In calculating the RMS of the voltage , we simply divide the peak voltage by square root of 2 (√2)

V_{rms} = \frac{7.75}{\sqrt{2} }

= \frac{7.75}{1.414}

= 5.48 V

6 0
3 years ago
Bryce, a mouse lover, keeps his four pet mice in a roomy cage, where they spend much of their spare time (when they are not slee
user100 [1]

Answer:

I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s ,  I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s ,  I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s  and I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

Explanation:

The impulse is equal to the variation of the moment, to apply this relationship to our case, we will assume that initially the mouse was at rest

    I = Δp = m v_{f} -m v₀

    I = m (v_{f}  -v₀)

Bold indicates vector quantities, let's calculate the momentum of each mouse in for the x and y axes

We recommend bringing all units to the SI system

Mouse 1.

It has a mass of 22.3 g = 22.3 10⁻³ kg, a final velocity of (v = 0.349 i ^ - 0.301 j ^) m / s with an initial velocity of zero

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 22.3 10⁻³ (0.349 -0)

    Iₓ = 7.78 10⁻³ J s

   I_{y} = m (v_{fy}  -v_{oy} )

   I_{y} = 22.3 10⁻³ (-0.301)

   I_{y} = -6.71 10⁻³ J s

   I₁ = (7.78 i ^ - 6.71 j ^) 10⁻³ J s

Mouse 2

Mass 17.9 g = 17.9 10⁻³ kg

Speed ​​(-0.699 i ^ - 0.815 j ^) m / s

    Iₓ = m (v_{fx}  - v₀ₓ)

    Iₓ = 17.9 10⁻³ (-0.699 -0)

    Iₓ = -12.5 10⁻³ J s

    I_{y} = 17.9 10⁻³ (-0.815 - 0)

    I_{y} = -14.6 10⁻³ J s

   I₂ = (-12.5 i ^ -14.6 j ^) 10⁻³ J s

Mouse 3

Mass 19.1 g = 19.1 10⁻³ kg

Speed ​​(0.745i ^ + 0.975 j ^) m / s

    Iₓ = 19.1 10⁻³ (0.745 -0)

    Iₓ = 14.2 10⁻³ J s

    I_{y} = 19.1 10⁻³(0.975 -0)

    I_{y} = 18.6 10⁻³ J s

    I₃ = (19.1i ^ + 18.6 j ^) 10⁻³ J s

Mouse 4

Mass 10.1 g = 10.1 10⁻³ kg

Speed ​​(-0.905i ^ + 0.717j ^) m / s

    Iₓ = 10.1 10⁻³ (-0.905 -0)

    Iₓ = -9.14 10⁻³ J s

    I_{y} = 10.1 10⁻³ (0.717 -0)

    I_{y} = 7.24 10⁻³ J s

   I₄ = (-9.14i ^ + 7.24 j ^) 10⁻³ J s

8 0
3 years ago
A vertical spring with spring stiffness constant 305 N/m oscillates with an amplitude of 28.0 cm when 0.235 kg hangs from it. Th
den301095 [7]

Answer:

The function that describe the motion in the time

y (t) = 0.28m * sin ( 36.025 * t)

Explanation:

The angular frequency of oscillation of the spring

w = √k/m

w = √305 N/m / 0.235 kg

w = 36.025 rad / s

To determine the function of the motion knowing as a motion oscillation in a amplitude a frequency

y(t) = A * sin (w t )

So

A = 28.0 cm * 1 m / 100 cm = 0.28 m

So replacing to determine the function of the motion in the time

y (t) = A sin (w t)

y (t) = 0.28m * sin ( 36.025 * t)

7 0
3 years ago
Which statement is correct? (2 points) Select one:
Olin [163]
<span>The correct answer is B - Light can travel in a vacuum, and its speed is constant if the source is moving or stationary.</span>
7 0
3 years ago
Other questions:
  • If the motion of the particles in the room slow down, the temperature in the room would
    15·1 answer
  • The movement of particles from high to low concentration. True or False
    12·1 answer
  • What are scientists who study the forces and shape of the earth called?
    8·1 answer
  • Use the drop-down menus to complete the statements. When the 5.0 kg cylinder fell 100 m, the final temperature of the water was
    12·1 answer
  • A researcher studying the nutritional value of a new candy places a 4.10-gram sample of the candy inside a bomb calorimeter and
    7·1 answer
  • On an icy road, a 1100 kg car moving at 55 km/h strikes a 480 kg truck moving in the same direction at 37 km/h . The pair is soo
    11·2 answers
  • A maroon plane has a takeoff speed of 88.3 m/s and requires 1635 m to reach that speed. Determine the acceleration of the plane
    8·1 answer
  • PLEASE HELP ME WITH THIS ONE QUESTION
    11·1 answer
  • URGENT PLEASE ANSWER THIS ASAP I WILL MARK YOU THE BRAINLIEST !!!
    14·2 answers
  • Acceleration of a particle moving along x axis is given
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!