Answer:
aaksj
Explanation:
a) the capacitance is given of a plate capacitor is given by:
C = \epsilon_0*(A/d)
Where \epsilon_0 is a constant that represents the insulator between the plates (in this case air, \epsilon_0 = 8.84*10^(-12) F/m), A is the plate's area and d is the distance between the plates. So we have:
The plates are squares so their area is given by:
A = L^2 = 0.19^2 = 0.0361 m^2
C = 8.84*10^(-12)*(0.0361/0.0077) = 8.84*10^(-12) * 4.6883 = 41.444*10^(-12) F
b) The charge on the plates is given by the product of the capacitance by the voltage applied to it:
Q = C*V = 41.444*10^(-12)*120 = 4973.361 * 10^(-12) C = 4.973 * 10^(-9) C
c) The electric field on a capacitor is given by:
E = Q/(A*\epsilon_0) = [4.973*10^(-9)]/[0.0361*8.84*10^(-12)]
E = [4.973*10^(-9)]/[0.3191*10^(-12)] = 15.58*10^(3) V/m
d) The energy stored on the capacitor is given by:
W = 0.5*(C*V^2) = 0.5*[41.444*10^(-12) * (120)^2] = 298396.8*10^(-12) = 0.298 * 10 ^6 J
Answer:
D
Explanation:
Newtons first law states that if an object is at rest it will stay at rest only if an unbalanced force acts on it. As well as if an object is in motion it will stay in motion unless an unbalanced force acts on it.
Ps- The object will stay moving in the same speed and direction.
Answer:
The rotation of a planet around it's sun
Answer:
During a typical school day all forms of eneergy is being utilised and also transfer of energy takes place from one form to another.
Explanation:
Chemical energy- A bunsen burner burning a beaker filled with water.
Heat energy- The water in the beaker absorbing the heat from the burner.
Electrical energy- Running Fans and lights in a classroom by switches.
Solar energy- Solar energy harnessed by solar panels to run the fans and lights by converting it into electrical energy.
Potential energy- A ball being held by a student at a certain height possesses energy due to gravity.
Kinetic energy- The same ball being left by the boy from a certain height produces kinetic energy