They are 50 stars in the U.S flag.
gawaingnpang nkabuhayan, hamon at oportinidad
Answer:
m = 35.98 Kg ≈ 36 Kg
Explanation:
I₀ = 125 kg·m²
R₁ = 1.50 m
ωi = 0.600 rad/s
R₂ = 0.905 m
ωf = 0.800 rad/s
m = ?
We can apply The law of conservation of angular momentum as follows:
Linitial = Lfinal
⇒ Ii*ωi = If*ωf <em>(I)</em>
where
Ii = I₀ + m*R₁² = 125 + m*(1.50)² = 125 + 2.25*m
If = I₀ + m*R₂² = 125 + m*(0.905)² = 125 + 0.819025*m
Now, we using the equation <em>(I) </em>we have
(125 + 2.25*m)*0.600 = (125 + 0.819025*m)*0.800
⇒ m = 35.98 Kg ≈ 36 Kg
Answer:
The items here are describing either a condition in a later interacton or a protogalactic cloud. The results matching with spiral and elliptical galaxy are:
For spiral galaxy are options 6,3,2 and 5.
and for elliptical galaxy are options 4 and 1.
Explanation:
Here it is given that astrnomers suspect that types of galaxy can be affected both by the conditions which occurs due to protogalactic cloud and then from it forms the initial conditions and then by the later interactions with the other galaxies.
so, both types of galaxies are matched with their respective items given:
A. Spiral galaxy:
2. A galaxy collision results tostripping of gas.
3. The protogalactic cloud rotates in a very slow motion.
5. The density of protogalactic cloud is very high.
6. when the protogalactic cloud shrinks cloud forms very rapidly.
B. Elliptical galaxy:
1. The protogalactic cloud has high angular momentum.
4. Most of the protogalactic gases settles down into a disk.
Potential energy is high and kinetic is equal i believe.