Answer:
the maximum vertical height the person in the cart can reach is 18.42 m
Explanation:
Given;
mass of the person in cart, m₁ = 45 kg
mass of the cart, m₂ = 43 kg
acceleration due to gravity, g = 9.8 m/s²
final speed of the cart before it goes up the hill, v = 19 m/s
Apply the principle of conservation of energy;

Therefore, the maximum vertical height the person in the cart can reach is 18.42 m
No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.
<u>First Symbol </u>: Cobalt (Co)
Its Group Number - 9
Its Period Number - 4
Its Family Name - Transition Metal
<u>Second Symbol</u> : Silicon (Si)
Its Group Number - 14
Its Period Number - 2
Its Family Name - Semiconductor
<u>Third Symbol</u> : Astatine (At)
Its Group Number - 17
Its Period Number - 6
Its Family Name - Halogen
<u>Fourth Symbol </u>: Magnesium (Mg)
Its Group Number - 2
Its Period Number - 3
Its Family Name - Alkaline Earth Metal
<u>Fifth Symbol</u> : Xenon (Xe)
Its Group Number - 18
Its Period Number - 5
Its Family Name - Noble Gas
Velocity. Net force causes acceleration and acceleration causes a change in direction and/or magnitude of velocity
Answer:
A) Energy is dissipated into heat and sound energy due to Friction
B) The energy goes into heat and sound energy due to friction again, otherwise the cart would accelerate due to an unbalanced force. Therefore, we know there's friction, and the friction causes energy loss.