Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Answer:
urbanization implications
environmental implications
benefit versus the cost
Explanation:
Conservation involves preservation of organisms and their natural habitat to encourage biodiversity and reduces the risk of extinction.
Urbanization involves the loss of organism’s natural habitat due to deforestation and building of more structures such as buildings and road structures.Government must consider before passing conservation policies if the urbanization will have a bigger impact than conservation.
Environmental implications is also taken into account as the environment is where we live and makes it very important to ensure there are no negative effects.
The benefit and cost are weighed and the one with a lower cost and higher benefit is usually embraced.

<u>Difference </u><u>between </u><u>Atomic </u><u>mass</u><u>, </u><u>relative </u><u>atomic </u><u>mass </u><u>and </u><u>average </u><u>atomic </u><u>mass</u><u> </u><u>:</u><u>-</u>
<h3><u>Atomic </u><u>Mass </u><u>:</u><u>-</u></h3>
- Atomic mass is the mass of neutrons and protons present in the nucleus of an atom .
- It is always calculated for a single element and having direct value
- For isotopes also, the atomic mass is calculated separately . Example :- <u>Carbon </u><u>1</u><u>2</u><u> </u><u>,</u><u> </u><u>carbon </u><u>1</u><u>3</u><u> </u><u>and </u><u>carbon </u><u>1</u><u>4</u><u> </u><u>have </u><u>different </u><u>atomic </u><u>mass</u><u>. </u>
- The SI unit of Atomic mass is " u" and "amu"
<h3>
<u>Relative </u><u>Atomic </u><u>mass </u><u>:</u><u>-</u></h3>
- Relative atomic mass is mean mass of the atoms of an element which is compared to the 1/12th mass of carbon - 12 .
- Carbon - 12 is taken as a relative when we calculate the relative atomic mass of any element
- For calculating relative atomic mass, we need to know the masses, percentage and abundance of all types of elements
- Relative atomic mass is a dimension less quantity
<h3><u>Average </u><u>Atomic </u><u>Mass </u><u>:</u><u>-</u></h3>
- Average atomic mass is the average mass of an atoms of a particular element by considering it's isotopes
- While we calculate average atomic mass is a standardized number. Whereas, Average atomic mass sometimes varies geologically .
- It also includes percentage, abundance and masses of given element .
- In average atomic mass, We do not compare mean value with the 1/12 mass of carbon - 12
- The unit of Average atomic mass is "Amu" or " u " .
Answer:
FADH₂ → Q coenzyme → Complex III → c cytochrome → Complex IV → O₂
Explanation:
During oxidative phosphorylation, the electrons from NADH and FADH₂ are combined with O₂ and the energy released in the process is used to synthesize ATP from ADP.
The components of the electron transport chain are located in the internal part of the mitochondrial membrane in eukaryotic cells, and in the cell membrane in bacteria. The transporters in the electron transport chain are organized into four complexes in the inner mitochondrial membrane. A fifth complex then couples these reactions to the ATP synthesis.
Complex II receives the electrons from the succinate, which is an intermediary in the Krebs cycle. These electrons are transferred to the FADH₂ and then to the Q coenzyme. This liposoluble molecule will transport the electrons from Complex II to Complex III. In this complex, the electrons are transferred from the <em>b</em> cytochrome to the <em>c</em> cytochrome. This <em>c </em>cytochrome, which is a peripheric membrane protein located in the external part of the inner membrane, then transports the electrons to Complex IV where finally they are transferred to the oxygen.
The correct answer would be the first option. Material A having a smaller latent heat of fusion would mean that it will take only less energy to phase change into the liquid phase. Latent of heat of fusion is the amount of energy needed of a substance to phase change from solid to liquid or liquid to solid.