Answer:
a. Utilization of machine A = 0.8
Utilization of machine B = ![\frac{2}{9}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B9%7D)
b. Throughput of the production system:
![E_S = \frac{E_A+E_B}{2} = \frac{20+\frac{18}{7} }{2}=(\frac{1}{2}*20 )+ (\frac{1}{2}*\frac{18}{7} )= 10+\frac{9}{7}= \frac{79}{7} mins](https://tex.z-dn.net/?f=E_S%20%3D%20%5Cfrac%7BE_A%2BE_B%7D%7B2%7D%20%3D%20%5Cfrac%7B20%2B%5Cfrac%7B18%7D%7B7%7D%20%7D%7B2%7D%3D%28%5Cfrac%7B1%7D%7B2%7D%2A20%20%29%2B%20%28%5Cfrac%7B1%7D%7B2%7D%2A%5Cfrac%7B18%7D%7B7%7D%20%20%29%3D%2010%2B%5Cfrac%7B9%7D%7B7%7D%3D%20%5Cfrac%7B79%7D%7B7%7D%20mins)
c. Average waiting time at machine A = 16 mins
d. Long run average number of jobs for the entire production line = 3.375 jobs
e. Throughput of the production system when inter arrival time is 1 = ![\frac{5}{6} mins](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B6%7D%20mins)
Step-by-step explanation:
Machines A and B in the production line are arranged in series
Processing times for machines A and B are calculated thus;
![M_A = \frac{1}{4}/min](https://tex.z-dn.net/?f=M_A%20%3D%20%5Cfrac%7B1%7D%7B4%7D%2Fmin)
![M_B = \frac{1}{2} /min](https://tex.z-dn.net/?f=M_B%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Fmin)
Inter arrival time is given as 5 mins
![\beta _A = \frac{1}{5} = 0.2/min](https://tex.z-dn.net/?f=%5Cbeta%20_A%20%3D%20%5Cfrac%7B1%7D%7B5%7D%20%3D%200.2%2Fmin)
since the processing time for machine B adds up the processing time for machine A and the inter arrival time,
Inter arrival time for machine B,
![5+4 = 9mins\\\beta _B = \frac{1}{9} /min](https://tex.z-dn.net/?f=5%2B4%20%3D%209mins%5C%5C%5Cbeta%20_B%20%3D%20%5Cfrac%7B1%7D%7B9%7D%20%2Fmin)
a. Utilization can be defined as the proportion of time when a machine is in use, and is given by the formula ![\frac{\beta }{M}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cbeta%20%7D%7BM%7D)
Therefore the utilization of machine A is,
![P_A = \frac{\beta_A }{M_A}=\frac{0.2}{\frac{1}{4} }= 0.8](https://tex.z-dn.net/?f=P_A%20%3D%20%5Cfrac%7B%5Cbeta_A%20%7D%7BM_A%7D%3D%5Cfrac%7B0.2%7D%7B%5Cfrac%7B1%7D%7B4%7D%20%7D%3D%200.8)
And utilization of machine B is,
![P_B = \frac{\beta_B }{M_B} = \frac{\frac{1}{9} }{\frac{1}{2} }= \frac{2}{9}](https://tex.z-dn.net/?f=P_B%20%3D%20%5Cfrac%7B%5Cbeta_B%20%7D%7BM_B%7D%20%3D%20%5Cfrac%7B%5Cfrac%7B1%7D%7B9%7D%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%20%5Cfrac%7B2%7D%7B9%7D)
b. Throughput can be defined as the number of jobs performed in a system per unit time.
Throughput of machines A and B,
![E_A = \frac{\frac{1}{M_A} }{1-P_A}= \frac{4}{1-0.8} = \frac{4}{0.2}= 20 mins\\ E_B = \frac{\frac{1}{M_B} }{1-P_B}= \frac{2}{1-\frac{2}{9} } = \frac{18}{7}mins](https://tex.z-dn.net/?f=E_A%20%3D%20%5Cfrac%7B%5Cfrac%7B1%7D%7BM_A%7D%20%7D%7B1-P_A%7D%3D%20%5Cfrac%7B4%7D%7B1-0.8%7D%20%3D%20%5Cfrac%7B4%7D%7B0.2%7D%3D%2020%20mins%5C%5C%20%20E_B%20%3D%20%5Cfrac%7B%5Cfrac%7B1%7D%7BM_B%7D%20%7D%7B1-P_B%7D%3D%20%5Cfrac%7B2%7D%7B1-%5Cfrac%7B2%7D%7B9%7D%20%7D%20%3D%20%5Cfrac%7B18%7D%7B7%7Dmins)
Throughput of the production system is therefore the mean throughput,
![E_S = \frac{E_A+E_B}{2} = \frac{20+\frac{18}{7} }{2}=(\frac{1}{2}*20 )+ (\frac{1}{2}*\frac{18}{7} )= 10+\frac{9}{7}= \frac{79}{7} mins](https://tex.z-dn.net/?f=E_S%20%3D%20%5Cfrac%7BE_A%2BE_B%7D%7B2%7D%20%3D%20%5Cfrac%7B20%2B%5Cfrac%7B18%7D%7B7%7D%20%7D%7B2%7D%3D%28%5Cfrac%7B1%7D%7B2%7D%2A20%20%29%2B%20%28%5Cfrac%7B1%7D%7B2%7D%2A%5Cfrac%7B18%7D%7B7%7D%20%20%29%3D%2010%2B%5Cfrac%7B9%7D%7B7%7D%3D%20%5Cfrac%7B79%7D%7B7%7D%20mins)
c. Average waiting time according to Little's law is defined as the average queue length divided by the average arrival rate
Average queue length, ![L_q = \frac{P_A^2}{1-P_A} = \frac{0.8^2}{1-0.8}=\frac{0.64}{0.2}= 3.2](https://tex.z-dn.net/?f=L_q%20%3D%20%5Cfrac%7BP_A%5E2%7D%7B1-P_A%7D%20%3D%20%5Cfrac%7B0.8%5E2%7D%7B1-0.8%7D%3D%5Cfrac%7B0.64%7D%7B0.2%7D%3D%203.2)
Average waiting time = ![\frac{3.2}{\frac{1}{5} }= 3.2*5=16mins](https://tex.z-dn.net/?f=%5Cfrac%7B3.2%7D%7B%5Cfrac%7B1%7D%7B5%7D%20%7D%3D%203.2%2A5%3D16mins)
d. Since the average production time per job is 30 mins;
Probability when machine A completes in 30 mins,
![P(A = 30)= e^{-M_A(1-P_A)30 }= e^{-\frac{1}{4}(1-0.8)30 }=0.225](https://tex.z-dn.net/?f=P%28A%20%3D%2030%29%3D%20e%5E%7B-M_A%281-P_A%2930%20%7D%3D%20e%5E%7B-%5Cfrac%7B1%7D%7B4%7D%281-0.8%2930%20%7D%3D0.225)
And probability when machine B completes in 30 mins,
![P(B = 30)= e^{-M_B(1-P_B)30 }= e^{-0.5(1-\frac{2}{9} )30 }=e^{-\frac{15*7}{9} }=e^{-11.6}](https://tex.z-dn.net/?f=P%28B%20%3D%2030%29%3D%20e%5E%7B-M_B%281-P_B%2930%20%7D%3D%20e%5E%7B-0.5%281-%5Cfrac%7B2%7D%7B9%7D%20%2930%20%7D%3De%5E%7B-%5Cfrac%7B15%2A7%7D%7B9%7D%20%7D%3De%5E%7B-11.6%7D)
The long run average number of jobs in the entire production line can be found thus;
![P(S = 30)=(\frac{ {P_A}+{P_B}}{2})*30 = (\frac{ 0.225}+{0}}{2})*30= 0.1125*30\\=3.375jobs](https://tex.z-dn.net/?f=P%28S%20%3D%2030%29%3D%28%5Cfrac%7B%20%7BP_A%7D%2B%7BP_B%7D%7D%7B2%7D%29%2A30%20%3D%20%28%5Cfrac%7B%200.225%7D%2B%7B0%7D%7D%7B2%7D%29%2A30%3D%200.1125%2A30%5C%5C%3D3.375jobs)
e. If the mean inter arrival time is changed to 1 minute
![\beta _A= \frac{1}{1}= 1/min\\\beta _B= \frac{1}{6}/min\\ M_A = \frac{1}{4}min\\ M_B = \frac{1}{2} min](https://tex.z-dn.net/?f=%5Cbeta%20_A%3D%20%5Cfrac%7B1%7D%7B1%7D%3D%201%2Fmin%5C%5C%5Cbeta%20%20_B%3D%20%5Cfrac%7B1%7D%7B6%7D%2Fmin%5C%5C%20M_A%20%3D%20%5Cfrac%7B1%7D%7B4%7Dmin%5C%5C%20M_B%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20min)
Utilization of machine A, ![P_A = \frac{\beta_A }{M_A} = 4](https://tex.z-dn.net/?f=P_A%20%3D%20%5Cfrac%7B%5Cbeta_A%20%7D%7BM_A%7D%20%3D%204)
Utilization of machine B, ![P_B = \frac{\beta_B}{M_B} = \frac{1}{3}](https://tex.z-dn.net/?f=P_B%20%3D%20%5Cfrac%7B%5Cbeta_B%7D%7BM_B%7D%20%3D%20%5Cfrac%7B1%7D%7B3%7D)
Throughput;
![E_A = \frac{\frac{1}{M_A} }{1-P_A} = \frac{4}{1-4} = \frac{4}{3} \\E_B= \frac{\frac{1}{M_B} }{1-P_B} = \frac{2}{1-\frac{1}{3} } = 3\\\\E_S= \frac{E_A+E_B}{2} = \frac{\frac{4}{3}+3 }{2}=(\frac{4}{3} *\frac{1}{2} )+(3*\frac{1}{2} ) =\frac{2}{3} + \frac{3}{2} \\= \frac{5}{6} min](https://tex.z-dn.net/?f=E_A%20%3D%20%5Cfrac%7B%5Cfrac%7B1%7D%7BM_A%7D%20%7D%7B1-P_A%7D%20%3D%20%5Cfrac%7B4%7D%7B1-4%7D%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5C%5CE_B%3D%20%5Cfrac%7B%5Cfrac%7B1%7D%7BM_B%7D%20%7D%7B1-P_B%7D%20%3D%20%5Cfrac%7B2%7D%7B1-%5Cfrac%7B1%7D%7B3%7D%20%7D%20%3D%203%5C%5C%5C%5CE_S%3D%20%5Cfrac%7BE_A%2BE_B%7D%7B2%7D%20%3D%20%5Cfrac%7B%5Cfrac%7B4%7D%7B3%7D%2B3%20%7D%7B2%7D%3D%28%5Cfrac%7B4%7D%7B3%7D%20%2A%5Cfrac%7B1%7D%7B2%7D%20%29%2B%283%2A%5Cfrac%7B1%7D%7B2%7D%20%29%20%3D%5Cfrac%7B2%7D%7B3%7D%20%2B%20%5Cfrac%7B3%7D%7B2%7D%20%5C%5C%3D%20%5Cfrac%7B5%7D%7B6%7D%20%20min)