(x, y) → (x, y + n) - translate the graph n units up
(x, y) → (x, y - n) - translate the graph n units down
(x, y) → (x - n, y) - translate the graph n units left
(x, y) → (x + n, y) - translate the graph n units right
---------------------------------------------------------------------------
(x, y) → (x + 2, y)
translate the graph 2 units right.
Answer:
<h2>
Tₙ = -3(2)ⁿ</h2>
Step-by-step explanation:
The explicit rule for determining the nth term of a geometric sequence is expressed as Tₙ = arⁿ⁻¹ where;
a is the first term of the geometric sequence
r is the common ratio
n is the number of terms
If a geometric sequence has a common ratio of 2 and the 12th term is −12,288, then;
T₁₂ = ar¹²⁻¹
T₁₂ = ar¹¹
Given T₁₂ = -12,288 and r = 2, we can calculate the first term a
-12,288 = a2¹¹
a = -12,288/2¹¹
a = -12,288/2048
a = -6
Since the explicit rule for determining the nth term of a geometric sequence is expressed as Tₙ = arⁿ⁻¹, then for the sequence given, the explicit rule will be;
Tₙ = -6(2)ⁿ⁻¹
Tₙ = -6 * 2ⁿ * 2⁻¹
Tₙ = -6 * 2ⁿ * 1/2
Tₙ = -3(2)ⁿ
Hence the explicit rule that describes this sequence is Tₙ = -3(2)ⁿ
Answer:
y = -1/3x +3
Step-by-step explanation:
First we need to find the slope
m = (y2-y1)/(x2-x1)
= (2-3)/(3-0)
-1/3
Then we know the y intercept( where it crosses the y axis)
It crosses at y=3
The slope intercept form is
y= mx+b where m is the slope and b is the y intercept
y = -1/3x +3