Answer:
86701 Micrometers.
Explanation:
Multiply 0.86701 dm by 100,000 to get 86701 um.
Answer:
Q = -68.859 kJ
Explanation:
given details
mass 
initial pressure P_1 = 104 kPa
Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K
final pressure P_2 = 1068 kPa
Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K
we know that
molecular mass of 
R = 8.314/44 = 0.189 kJ/kg K
c_v = 0.657 kJ/kgK
from ideal gas equation
PV =mRT






WORK DONE

w = 586*(0.1033 -0.514)
W =256.76 kJ
INTERNAL ENERGY IS



HEAT TRANSFER

= 187.902 +(-256.46)
Q = -68.859 kJ
Answer:
0.5m^2/Vs and 0.14m^2/Vs
Explanation:
To calculate the mobility of electron and mobility of hole for gallium antimonide we have,
(S)
Where
e= charge of electron
n= number of electrons
p= number of holes
mobility of electron
mobility of holes
electrical conductivity
Making the substitution in (S)
Mobility of electron


Mobility of hole in (S)


Then, solving the equation:
(1)
(2)
We have,
Mobility of electron 
Mobility of hole is 
Answer:
Explanation gives the answer
Explanation:
% Using MATLAB,
% Matlab file : fieldtovar.m
function varargout = fieldtovar(S)
% function that accepts single structure as input, assigning each
% of the field values to user-defined variables
fields = fieldnames(S); % get the field names of the input structure
% check if number of user-defined variables and number of fields in
% structure are equal
if nargout == length(fields)
% if equal assign each value of structure to user-defined varable
for i=1:nargout
varargout{i} = getfield(S,fields{i});
end
else
% if not equal display an error message
error('The number of output variables does not equal the number of fields');
end
end
%This brings an end to the program