Answer:
the pressure reading when connected a pressure gauge is 543.44 kPa
Explanation:
Given data
tank volume (V) = 400 L i.e 0.4 m³
temperature (T) = 25°C i.e. 25°C + 273 = 298 K
air mass (m) = 3 kg
atmospheric pressure = 98 kPa
To find out
pressure reading
Solution
we have find out pressure reading by gauge pressure
i.e. gauge pressure = absolute pressure - atmospheric pressure
first we find absolute pressure (p) by the ideal gas condition
i.e pV = mRT
p = mRT / V
p = ( 3 × 0.287 × 298 ) / 0.4
p = 641.44 kPa
so
gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 641.44 - 98
gauge pressure = 543.44 kPa
Answer:
The pressure exerted by this man on ground
(a) if he stands on both feet is 8.17 KPa
(b) if he stands on one foot is 16.33 KPa
Explanation:
(a)
When the man stand on both feet, the weight of his body is uniformly distributed around the foot imprint of both feet. Thus, total area in this case will be:
Area = A = 2 x 480 cm²
A = 960 cm²
A = 0.096 m²
The force exerted by man on his area will be equal to his weight.
Force = F = Weight
F = mg
F = (80 kg)(9.8 m/s²)
F = 784 N
Now, the pressure exerted by man on ground will be:
Pressure = P = F/A
P = 784 N/0.096 m²
<u>P = 8166.67 Pa = 8.17 KPa</u>
(b)
When the man stand on one foot, the weight of his body is uniformly distributed around the foot imprint of that foot only. Thus, total area in this case will be:
Area = A = 480 cm²
A = 0.048 m²
The force exerted by man on his area will be equal to his weight, in this case, as well.
Force = F = Weight
F = mg
F = (80 kg)(9.8 m/s²)
F = 784 N
Now, the pressure exerted by man on ground will be:
Pressure = P = F/A
P = 784 N/0.048 m²
<u>P = 16333.33 Pa = 16.33 KPa</u>
Answer:
Option D, Ground Wire
Explanation:
Oleg is a mustimeter or multi tester or a basic voltage tester which is used to test the ground. The main purpose of the tester is to ensure that the outlet is connected to the ground of the circuit, thereby ensuring its proper functioning.
Hence, option D is correct
Answer:
It could affect how far the projectile travels
Explanation:
Facing Uphill: Moves less far
Downhill: Moves further
Answer:
23.3808 kW
20.7088 kW
Explanation:
ρ = Density of oil = 800 kg/m³
P₁ = Initial Pressure = 0.6 bar
P₂ = Final Pressure = 1.4 bar
Q = Volumetric flow rate = 0.2 m³/s
A₁ = Area of inlet = 0.06 m²
A₂ = Area of outlet = 0.03 m²
Velocity through inlet = V₁ = Q/A₁ = 0.2/0.06 = 3.33 m/s
Velocity through outlet = V₂ = Q/A₂ = 0.2/0.03 = 6.67 m/s
Height between inlet and outlet = z₂ - z₁ = 3m
Temperature to remains constant and neglecting any heat transfer we use Bernoulli's equation

Work done by pump

∴ Power input to the pump 23.3808 kW
Now neglecting kinetic energy

Work done by pump

∴ Power input to the pump 20.7088 kW