You can use a sieve, aka a sifter, to separate the rice grains from the flour
<span>Nucleophilic acyl substitution describe a class of substitution reactions involving nucleophiles and acyl compounds. In this type of reaction, a nucleophile – such as an alcohol, amine, or enolate – displaces the leaving group of an acyl derivative – such as an acid halide, anhydride, or ester. The resulting product is a carbonyl-containing compound in which the nucleophile has taken the place of the leaving group present in the original acyl derivative. Because acyl derivatives react with a wide variety of nucleophiles, and because the product can depend on the particular type of acyl derivative and nucleophile involved, nucleophilic acyl substitution reactions can be used to synthesize a variety of different products.</span>
Answer:
(102 900 ÷ 12) + (170 × 1.27) = 8800
Step 1. Evaluate the expressions inside the parentheses (PEMDAS)
102 900 ÷ 12 = 8575
170 × 1.27 = 215.9
In multiplication and division problems, your answer can have no more significant figures than the number with the fewest significant figures.
Thus, the underlined digits are not significant, but we keep them in our calculator to avoid roundoff error.
Step 2. Do the addition (PEMDAS).
8575
+ 215.9
= 8790.9
Everything that you add to an insignificant digit gives an insignificant digit as an answer.
Thus, the underlined digits are not significant.
We must drop them and round up the answer to 8800.
Explanation:
Calculations in chemistry can range from large numbers to the smallest number in decimals to be more accurate in data results. When this occurs using scientific notations allows you to note down results regardless of size as accurate as possible without writing a lot of numbers.
Using the ideal gas law equation, we can find the number of H₂ moles produced.
PV = nRT
Where P - pressure - 0.811 atm x 101 325 Pa/atm = 82 175 Pa
V - volume - 58.0 x 10⁻³ m³
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 32 °C + 273 = 305 K
substituting these values in the equation,
82 175 Pa x 58.0 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 305 K
n = 1.88 mol
The balanced equation for the reaction is as follows;
CaH₂(s) + 2H₂O(l) --> Ca(OH)₂(aq) + 2H₂(g)
stoichiometry of CaH₂ to H₂ is 1:2
When 1.88 mol of H₂ is formed , number of CaH₂ moles reacted = 1.88/2 mol
therefore number of CaH₂ moles reacted = 0.94 mol
Mass of CaH₂ reacted - 0.94 mol x 42 g/mol = 39.48 g of CaH₂ are needed