Answer:
1 = 3.75L
2 = 26.91L
3 = 18.37L
Explanation:
Hello,
The question above can be solved when we know Avogadro's law which states that the volume of a fixed mass of gas is directly proportional the number of moles present provided temperature and pressure are kept constant.
Mathematically,
N = kV k = n/v
N1/V1 = N2/V2 = N3/V3 =......=Nn/Vn
N1 = 1.20 moles
V1 = 7.50L
1) if half of the Ne atoms escaped what would be the final volume.
1 mole of Ne = 6.022×10²³ atoms
½(1.20) moles of Ne = ?
0.6 moles of Ne = ?
1 mole = 6.022×10²³ atom
1.2 moles = ?
x = 1.2 × 6.022×10²³ atoms
x = 7.23×10²³atoms
If ½ of 7.23×10²³ atoms escaped, how many would be left
½ × 7.23×10²³ atoms = 3.61×10²³atoms
Now we have to find the number of moles and then use our equation.
1 mole = 6.022×10²³ atoms
y mole = 3.61×10²³ atom
y = 0.6 mole
N2 = 0.6 mole
N1 / V1 = N2 / V2
Make V2 the subject of formula,
V2 = (N2 × V1) / N1
V2 = (0.6 × 7.50) / 1.20
V2 = 3.75L
The volume after half of the Ne atoms escaped is 3.75L
2)
When a sample of 3.10 mole is added to 1.20 moles present
N1 = 1.20
V1 = 7.51
N2 = (1.20 + 3.10) = 4.30L
V2 = ?
N1 / V1 = N2 / V2
V2 = (N2 × V1) / N1
V2 = (4.30 × 7.51) / 1.20
V2 = 26.91L
The volume of Ne gas if 3.10 moles is added to it is 26.91L
3)
A sample of 35g is added to the 1.20 mole Ne in the container.
We need to convert the mass (35g) to moles. This can be done using mass-molarmass relationships
Number of moles = mass / molar mass
Molar mass of Ne = 20.17g/mol
Number of moles = 35 / 20.17
Number of moles = 1.735 moles
N2 = 1.20 moles + 1.735 moles
N2 = 2.935 moles
N1 / V1 = N2 / V2
V2 = (N2 × V1) / N1
V2 = (2.935 × 7.51) / 1.20
V2 = 18.37L
On addition of 35g of Ne gas to the container, the volume is increased to 18.37L