1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Papessa [141]
3 years ago
13

3(2b-4a+3c) if a =1/2,b=3, and c=-2/3

Mathematics
2 answers:
valentina_108 [34]3 years ago
8 0
This is just substitution. so 3(2(3)-4(1/2)+3(-2/3)= 3(6-2-2)= 3(2) = 6. Basically you plug in the values they gave you for the variables and then just solve one step at a time
STatiana [176]3 years ago
4 0
<span>3(2(3)-4(1/2)+3(-2/3)= 3(6-2-2)= 3(2) = 6. </span>
You might be interested in
Subract (21x) - (-16 + 7x) can someone help me
koban [17]

The solution to (21x) - (-16 + 7x) is 14x + 16

<h3><u>Solution:</u></h3>

Given that (21x) - (-16 + 7x)

We have to evaluate the given expression

Let's look at the given expression

(21x) - (-16 + 7x)

Multiply the terms within second bracket with minus sign

<em><u>There are two simple rules to remember:</u></em>

  • When you multiply a negative number by a positive number then the product is always negative.
  • When you multiply two negative numbers or two positive numbers then the product is always positive

⇒ (21x) + 16 - 7x

Removing the parenthesis

⇒ 21x + 16 - 7x

Combining the like terms,

⇒ 14x + 16

Thus the solution is 14x + 16

7 0
2 years ago
Organize the data into frequency table
irga5000 [103]
Wheres the data? we cant answer without the data.
8 0
3 years ago
Twelve members of a band purchase one beverage each during a break at practice. Exactly 5 of the 12 members bought bottled water
Hoochie [10]

Answer:

70

Step-by-step explanation:

You have to use ratios.  If 5 of 12 members bought water, then x of 168 members will buy water.

\frac{5}{12}  = \frac{x}{168}\\12x = 840\\x = 70

70 members will buy bottled water.

8 0
3 years ago
Dave has $8000 to invest for 15 years. He finds a bank that offers an interest rate of 3.1% compounded monthly. How much money w
ioda

Dave will have $12,728 after 15 years, if he has $8000 to invest for 15 years. He finds a bank that offers an interest rate of 3.1% compounded monthly.

Step-by-step explanation:

The given is,

                 Investment = $ 8000

               No. of years = 15 years

             Interest rate, i = 3.1 %

                 ( compounded monthly )  

Step:1

          For for calculating future value with compound interest monthly,

                                     A = P (1 +\frac{r}{n})^{nt}.................(1)

         Where,

                     A = Future amount

                     P = Initial investment

                     r = Rate of interest

                    n = Number of compounding in a year

                     t = Time period

Step:2

           From given values,

                           P = $8000

                            r =  3.1%

                            t = 15 years

                            n = 12 ( for monthly)

           Equation (1) becomes,

                          A = 8000( 1+\frac{0.031}{12} )^{(12)(15)}

                              = 8000 (1+0.002583)^{180}

                              = 8000(1.002583)^{180}

                              = 8000(1.591059)

                              =12728.48

                           A = $ 12728.48

Result:

           Dave will have $12,728 after 15 years, if he has $8000 to invest for 15 years. He finds a bank that offers an interest rate of 3.1% compounded monthly.

                             

       

8 0
3 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Other questions:
  • We _____ when calculating the average deviation, because the sum of all deviation scores around the mean equals zero.
    8·1 answer
  • Sabah has $450 to pay for college textbooks. She expects to pay about $75 per book. Her friend told her that 4 of them can be ch
    14·2 answers
  • The price of a radio was $20. It is on sale for $15. What is the percent of change in the price of a radio?
    13·1 answer
  • How to use and example to describe the multiplicative relationship between two equivalent ratios
    8·1 answer
  • Mae Ling earns a weekly salary of $325 plus a 6.5% commission on sales at a gift shop. How much would she make in a work week if
    15·1 answer
  • At a high school, 18% of the students play football and 6 % of the students play football and baseball. What is the probability
    8·2 answers
  • CAN SOMEONE HELP ME WITH REFLECTIONS??​
    10·1 answer
  • How do you convert percents to fractions and decimals?
    5·1 answer
  • Solve for x.<br> 2x + 6<br> X + 9<br> x = [?]
    6·2 answers
  • Which values of m and b will create a system of equations with no solution? Select two options.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!