Usual limit of sin is sinX/X--->1, when X--->0
sin3x/5x^3-4x=0/0?, sin3x/3x--->1 when x --->0, so sin3x/5x^3-4x= [3x. sin3x / 3x] /(5x^3-4x)=(sin3x / 3x) . (3x/5x^3-4x)
=(sin3x / 3x) . (3/5x^2- 4)
finally lim sin3x/5x^3-4x=lim (sin3x / 3x) .(3/5x^2- 4)=1x(3/-4)= - 3/4
x----->0 x---->0
Answer: x=18
Step-by-step explanation:
X/3=6
We want to get x alone so we multiply both sides by 3
X=18
Answer:
a: 3
b. 6973568802
Step-by-step explanation:
a₁ = 6 , r = 3 , a₂₀ =?
Result:
a₂₀ = 6973568802
Explanation:
To find a₂₀ we use the formula
aₙ = a₁ · r
^ⁿ⁻¹
In this example we have a₁ = 6 , r = 3 , n = 20. After substituting these values to above
formula, we obtain:
aₙ = a₁ · r
^ⁿ⁻¹
a₂₀ = 6 · 3
^²⁰⁻¹
a₂₀ = 6 · 1162261467
a₂₀ = 6973568802
Answer:
A,D,E
Step-by-step explanation:
-4(x + 2) – 2x + 4
=-4x-8-2x+4 D
=4x-2x-8+4 E
=-6x-4 A
Hope it helps!
The answer is 0.6, 5 or higher add one more, 4 or less stays the same