Remember that like charges repel each other. That is, positive repels positive and negative repels negative. Similar to how the north poles of magnets repel each other and south poles repel. However, at the atomic scale, protons, which have positive charge, are more influenced by the "Strong Force," which binds them close together. If they were to be separated ever so slightly, then the electromagnetic force would take over and they would repel each other like you'd expect.
Neutrons are also held together via the Strong Force, but don't have a charge so when separated, don't have an electromagnetic force pushing them away from each other.
However, electrons act differently. There is no "Strong Force" just the electromagnetic force. So, they keep a great distance from each other.
So in an atom, protons and neutrons stay close to each other, taking up little volume, while electrons take up a lot of volume.
BTW, the reason why electrons and protons act differently when they are close together is because protons are made up of smaller particles the carry this Strong Force. For electrons, there is no smaller constituent. And therefore, all you have is the electromagnetic force to influence it. That's it.
Hope that helps.
It will be
E = mgh.
where h and g are constant thus
m can be written as 4/3πr^3*density
E = 4/3πr^3* density
E? = 4/3π(2R)^3* density
= 4/3π8r^3
thus the e will be 4/3π8r^3* density/4/3πr^3*density nd thus you get 8E ..
Answer:
i think it is <u>teacher</u>
Explanation:
because it is noun
Answer:

Explanation:
There are two spheres name 1 and 2 and they posses the same charge, which is +q.
And they have equal mass which is 2.098 g.
The distance between these two spheres is,
.
And the acceleration of each sphere is,
.
Now the coulumbian force experience by 1 sphere due to 2 sphere,
.
And also the newton force will occur due to this force,
.
Now equate the above two values of force will get,

Further solve this,
.
Substitute all the known variables in above equation,
.
.
An object in motion stays in motion, while an object at rest will stay at rest, otherwise known as inertia. So, a rolling ball will stay in motion if it's moving, whereas if it's being held in you hand and resting, it won't!