Answer: 
Explanation:
Given
Magnitude of charge is 
Force experienced is 
Electric field intensity is the electrostatic force per unit charge

Thus, the electric field intensity is 
That's "<em><u>insolation</u></em>" ... not "insulation".
'Insolation' is simply the intensity of solar radiation over some area.
If 200 kW of radiation is shining on 300 m² of area, then the insolation is
(200 kW) / (300 m²) = <em>(666 and 2/3) watt/m²</em> .
Note that this is the intensity of the <em><u>incident</u></em> radiation. It doesn't say anything
about how much soaks in or how much bounces off.
Wait !
I just looked back at the choices, and realized that I didn't answer the question
at all. I have no idea what "1 sun" means. Forgive me. I have stolen your
points, and I am filled with remorse.
Wait again !
I found it, through literally several seconds of online research.
1 sun = 1 kW/m².
So 2/3 of a kW per m² = 2/3 of 1 sun
That's between 0.5 sun and 1.0 sun.
I feel better now, and plus, I learned something.
Eight electrons surrounding each non-hydrogen atom is the optimal electronic arrangement for covalent molecules because it is needed to achieve an octet structure and is necessary to fill both the s and p subshells of electrons.
<h3>What is Covalent bonding?</h3>
This is the type of bonding which involves the sharing of electrons between atoms of an element.
This is done to achieve an octet configuration thereby making them stable and less reactive thereby making it the most appropriate choice.
Read more about Covalent bonding here brainly.com/question/3447218
#SPJ4
This problem involves Newton's universal law of gravitation and the equation to follow would be.
F = GM₁M₂/r²
Given: M₁ = 0.890 Kg; M₂ = 0.890 Kg; F = 8.06 x 10⁻¹¹ N; G = 6.673 X 10⁻¹¹ N m²/Kg²
Solving for distance r = ?
r = √GM₁M₂/F
r = √(6.673 x 10⁻¹¹ N m₂/Kg²)(0.890 Kg)(0.890 Kg)/ 8.06 x 10⁻¹¹ N
r = 0.81 m
If the bubble travels 10 meters per second and it takes 10 seconds, then just multiply the distance per second by the total seconds to get the total depth.
10 • 10 = 100
The lake is 100 meters deep.
Think of it this way to clarify the answer:
It takes a bubble traveling at a speed of 10 meters per second 10 seconds to travel 100 meters.