The less soluble salt : PbCl₂
<h3>Further explanation</h3>
Given
0.1 M NaCl
Required
The less soluble salt
Solution
If we see from the answer option, the salt that is more difficult to dissolve in NaCl is PbCl₂ because it has the same ion (Cl)
When PbCl₂ is dissolved in water, ionization will occur
PbCl₂ ⇒ Pb²⁺+ 2Cl⁻
So, when dissolved in NaCl, NaCl itself will be ionized
NaCl ⇒ Na⁺ + Cl⁻
Based on the principle of equilibrium, the addition of an ion (one of the ions is enlarged), the reaction will shift towards the ion that was not added. In addition to this Cl ion, the reaction will shift to the left so that the solubility of PbCl₂ will decrease (the reaction to the right decreases)
All the objects are formed from the gas and dust orbitting the sun
Answer:
Weathering and erosion
Explanation:
Weathering can be explained as the breaking down of rocks/minerals on the surface of the Earth as a result of contact with biological organism, water, air and other factors
. There are 3 common types of weathering which are;
1) physical weathering
2) biological weathering
3) chemical weathering
Erosion can be regarded as a geological process, whereby earthen material are been transported away by natural forces, these forces could be wind as well as water.
Therefore, as you were climbing a a mountain, you noticed that rocks were crumbling below your feet and moving down the mountain. What is observed are weathering and erosion processes.
After the weakening and broken up of the rock by weathering then erosion transport the bit of the rock down the mountain as you are climbing, which means the "weathering process" breakdown and the "erosion process" involves the transport or movement of the bit of the rocks
Answer:
A) [H3PO4] will increase, [KH2PO4] will decrease, and pH will slightly decrease.
Explanation:
A buffer is a solution which resists changes to its pH when a small amount of acid or base is added to it.
Buffers consist of a weak acid (HA) and its conjugate base (A–) or a weak base and its conjugate acid. Weak acids and bases do not completely dissociate in water, and instead exist in solution as an equilibrium of dissociated and undissociated species. When a small quantity of a strong acid is added to a buffer solution, the conjugate base, A-, reacts with the hydrogen ions from the added acid to form the weak acid and a salt thereby removing the extra hydrogen ions from the solution and keeping the pH of the solution fairly constant. On the other hand, if a small quantity of a strong base is added to the buffer solution, the weak acid dissociates further to release hydrogen ions which then react with the hydroxide ions of the added base to form water and the conjugate base.
For example, if a small amount of strong acid is added to a buffer solution that is 0.700 M H3PO4 and 0.700 M KH2PO4, the following reaction is obtained:
KH₂PO₄ + H+ ----> K+ + H₃PO₄
Therefore, [H₃PO₄] will increase, [KH₂PO₄] will decrease, and pH will slightly decrease.: