Answer:
Saturated = The solution cannot dissolve any more solute at a given temperature
2) Unsaturated = solution can dissolve more solute at a given temperature.
3) Supersaturated = Solution which has more solute than its saturated solution
Explanation:
<h2>
<em><u>Mark </u></em><em><u>me </u></em><em><u>brainlist</u></em></h2>
Answer: it's easy just think about it:
Explanation:
weight: the weight of an object is the force acting on the object due to gravity.
mass: Mass is the amount of matter or substance that makes up an object.
in total: The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it.
Happy to help!
Feel free to ask any questions!
Explanation:
The given data is as follows.
= 0.483,
= 0.173 M,
= 0.433 M,
= 0.306 M,
= 9.0 atm
According to the ideal gas equation, PV = nRT
or, P =
Also, we know that
Density = 
So, P = MRT
and, M = 
= 
= 
= 0.368 mol/L
Now, we will calculate the cell potential as follows.
E = ![E^{o} - \frac{0.0591}{n} log \frac{[Co^{2+}]^{2}[Cl_{2}]}{[Co^{3+}][Cl^{-}]^{2}}](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5BCo%5E%7B2%2B%7D%5D%5E%7B2%7D%5BCl_%7B2%7D%5D%7D%7B%5BCo%5E%7B3%2B%7D%5D%5BCl%5E%7B-%7D%5D%5E%7B2%7D%7D)
= 
= 
= 
= 0.483 - 0.0185
= 0.4645 V
Thus, we can conclude that the cell potential of given cell at
is 0.4645 V.
Very small pka. can also be - pka.
The volume of water he dissolved the solute is 250 cubic centimeter.
<u>Explanation</u>:
Concentration = mass of solute in g / volume in dm^3
The concentration of a solution is defined as the ratio of mass of solute in grams to the volume of water in dm^3.
If concentration of a solution = 8 g/dm^3.
mass of solute =2 g.
Volume of a water = 2 / 8 = 0.25 dm^3. (or) 250 cubic centimeter.