When you immerse an ionic compound<span> in </span>water<span>, the ions are attracted to the </span>water <span>molecules, each of which carries a polar charge. If the attraction between the ions and the </span>water <span>molecules </span>is<span> great enough to break the bonds holding the ions together, the compound </span>dissolves<span>. </span>
Answer:
[K₂CrO₄] → 8.1×10⁻⁵ M
Explanation:
First of all, you may know that if you dilute, molarity must decrease.
In the first solution we need to calculate the mmoles:
M = mmol/mL
mL . M = mmol
0.0027 mmol/mL . 3mL = 0.0081 mmoles
These mmoles of potassium chromate are in 3 mL but, it stays in 100 mL too.
New molarity is:
0.0081 mmoles / 100mL = 8.1×10⁻⁵ M
Beaker does thermometer measures the thermal energy in the air
Answer:
1.5g/cm³
Explanation:
density=mass÷volume
mass= 1.5kg (<em>c</em><em>h</em><em>a</em><em>n</em><em>g</em><em>e</em><em> </em><em>i</em><em>n</em><em>t</em><em>o</em><em> </em><em>g</em>) = 1500g
volume of the cube = 10×10×10 = 1000cm³
density= divide 1500g÷1000cm = 1.5g/cm³
<h2>
Density= 1.5g/cm³</h2>
YOUR WELCOME!
Molarity can be defined as the number of moles of solute in 1 L solution.
Molarity of Na₂SO₄ solution - 0.200 M
this means there are 0.200 moles in 1 L solution
Molar mass of Na₂SO₄ - 142 g/mol
therefore mass of Na₂SO₄ in 1.00 L - 0.200 mol x 142 g/mol = 28.4 g
a mass of 28.4 g of Na₂SO₄ is present in 1.00 L