A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Increased temperature causes an increase in kinetic energy. The higher kinetic energy causes more motion in the gas molecules which break intermolecular bonds and escape from solution.
Answer:
its shorter than a regular one
Explanation:
the only reason is simply because it is shorter
Rust does not have the properties to catch onto flames. However, if you light it on fire, then it would probably catch in flames but not instantly and will not continue to burn unless you have soaked it in oil or flammable object or substance. :) Hope this helps!
The speed of the mouse is 11 ft/s