Answer:
Theoretical yield of hydrogen is 1.11 g
Explanation:
Balanced equation, 
As Mg remain present in excess therefore HCl is the limiting reagent.
According to balanced equation, 2 moles of HCl produce 1 mol of
.
Molar mass of HCl = 36.46 g/mol
So, 40.0 g of HCl =
of HCl = 1.10 moles of HCl
Hence, theoretically, number of moles of
are produced from 1.10 moles of HCl = 
Molar mass of
= 2.016 g/mol
So, theoretical yield of
= 
When atoms bond together to form molecules, they share or give electrons. If the electrons are shared equally by the atoms, then there is no resulting charge and the molecule is nonpolar.
The phosphate group of one nucleotide bonds covalently with the sugar molecule of the next nucleotide, and so on, forming a long polymer of nucleotide monomers. The sugar–phosphate groups line up in a “backbone” for each single strand of DNA, and the nucleotide bases stick out from this backbone. The carbon atoms of the five-carbon sugar are numbered clockwise from the oxygen as 1′, 2′, 3′, 4′, and 5′ (1′ is read as “one prime”). The phosphate group is attached to the 5′ carbon of one nucleotide and the 3′ carbon of the next nucleotide. In its natural state, each DNA molecule is actually composed of two single strands held together along their length with hydrogen bonds between the bases.
<h3>
Answer:</h3>
0.144 moles
<h3>
Explanation:</h3>
- The relationship between mass of a compound, number of moles and molar mass of the compound is given by;
- Number of moles = Mass ÷ Molar mass
- Molar mass is equivalent to the relative formula mass of the compound that is calculated the atomic masses of the elements making the compound.
In this case;
Our compound, KClO3 will have a molar mass of;
= 39 + 35.5 + 4(16)
= 138.5 g/mol
Mass of KClO3 is 20 g
Therefore;
Number of moles = 20 g ÷ 138.5 g/mol
= 0.144 moles
Thus, the number of moles in 20 g of KClO3 is 0.144 moles
Answer:
The correct answer is because the molecular structure.
Explanation:
The difficulty of ammonia and methane to be represented on paper is due to the molecular structure. These compounds have a three-dimensional projection with defined angles. Ammonia presents angles of 109.5º between the atom of Nitrogen and those of Oxygen. The ammonia presents 107.8º between the oxygen atoms.
In the methane molecule, there is 109.5º between the hydrogen molecules and the carbon atom. This results in the need for a 3D representation of the molecule.
Have a nice day!