Answer:
Hence the concentration of a MnO41- solution that has absorbance of 0.490 in the same cell at that wavelength is 0.3266.
Explanation:
Now A = el, el=const
Then,

Answer:
Eletrical
Explanation:
The electric transfers 70% of the input energy to kinetic energy 30% is wasted output energy in the form of thermal energy and sound.
The balanced equation for the reaction is as follows;
Ca(OH)₂ + 2HBr --> CaBr₂ + 2H₂O
stoichiometry of Ca(OH)₂ to HBr is 1:2
number of Ca(OH)₂ moles reacted - 0.10 mol/L x 0.1000 L = 0.010 mol
Number of HBr moles added - 0.10 mol/L x 0.4000 = 0.040 mol
1 mol of Ca(OH)₂ needs 2 mol of HBr for neutralisation
therefore 0.010 mol of Ca(OH)₂ needs - 0.010 x 2 = 0.020 mol of HBr to be neutralised
but 0.040 mol of HBr has been added therefore number of moles of HBr in excess - 0.040 - 0.020 = 0.020 mol
then pH of the medium can be calculated using the excess H⁺ ions
HBr is a strong acid therefore complete ionization
[HBr] = [H⁺]
[H⁺] = 0.020 mol / (100.0 + 400.0 mL)
= 0.020 mol / 0.5 L
= 0.040 mol/L
pH = -log[H⁺]
pH = - log [0.040 M]
pH = 1.40
pH of the medium is 1.40
Answer: The product from the reduction reaction is
CH3-CH2-CH(CH3)-CH2-CH2OH
IUPAC name; 3- Methylpentan-1-ol
Explanation:
Since oxidation is simply the addition of oxygen to a compound and reduction is likewise the addition of hydrogen to a compound.
Therefore, hydrogen is added onto the carbon atom adjacent to oxygen in 3- methyl pentanal
CH3 CH2 CHCH3 CH2 CHO thereby -CHO( aldehyde functional group) are reduced to CH2OH ( Primary alcohol) which gives;
3-methylpenta-1-ol .
The structure of the product is:
CH3-CH2-CH(CH3)-CH2-CH2OH
Answer:
you have to shake the soda up