Let at any instant of time the speed is vo and the angle made by the bike with the horizontal is given
now we have
component of speed in x direction given as

component of speed in y direction will be

now from above two equations we can say that here
= angle with the horizontal at any instant
and since here it is a sine curve so we know that

so we have slope of graph

From the given information in the question, the correct option is Option 1: 14 cm.
A non-stretched elastic spring has a conserved potential energy which gives it the ability to perform work. The elastic potential energy can be expressed as:
PE =
k 
Where PE is the energy, k is the spring constant and x is extension.
i. Given that: PE = 10 J and x = 10 cm, then;
PE =
k 
10 =
k 
20 = 100k
k = 0.2 J/cm
ii. To determine how far the spring is needed to be stretched, given that PE = 20 J.
PE =
k 
20 =
(0.2) 
40 = 0.2 
= 200
x = 
= 14.1421
x = 14.14 cm
So that;
x is approximately 14.00 cm.
Thus, the spring need to be stretched to 14.00 cm to give the spring 20 J of elastic potential energy.
For more information, check at: brainly.com/question/1352053.
Answer:
3.28 cm
Explanation:
To solve this problem, you need to know that a magnetic field B perpendicular to the movement of a proton that moves at a velocity v will cause a Force F experimented by the particle that is orthogonal to both the velocity and the magnetic Field. When a particle experiments a Force orthogonal to its velocity, the path it will follow will be circular. The radius of said circle can be calculated using the expression:
r = 
Where m is the mass of the particle, v is its velocity, q is its charge and B is the magnitude of the magnetic field.
The mass and charge of a proton are:
m = 1.67 * 10^-27 kg
q = 1.6 * 10^-19 C
So, we get that the radius r will be:
r =
= 0.0328 m, or 3.28 cm.
The equation for electrical power is<span>P=VI</span>where V is the voltage and I is the current. This can be rearranged to solve for I in 6(a).
6(b) can be solved with Ohm's Law<span>V=IR</span>or if you'd like, from power, after substituting Ohm's law in for I<span>P=<span><span>V2</span>R</span></span>
For 7, realize that because they are in parallel, their voltages are the same.
We can find the resistance of each lamp from<span>P=<span><span>V2</span>R</span></span>Then the equivalent resistance as<span><span>1<span>R∗</span></span>=<span>1<span>R1</span></span>+<span>1<span>R2</span></span></span>Then the total power as<span><span>Pt</span>=<span><span>V2</span><span>R∗</span></span></span>However, this will reveal that (with a bit of algebra)<span><span>Pt</span>=<span>P1</span>+<span>P2</span></span>
For 8, again the resistance can be found as<span>P=<span><span>V2</span>R</span></span>The energy usage is simply<span><span>E=P⋅t</span></span>