Answer:
Explanation:
Electrical energy is energy derived from electric potential energy or kinetic energy.
Or,
Electrical energy is a form of energy resulting from the flow of electric charge. Lightning, batteries and even electric eels are examples of electrical energy.People use electricity for lighting, heating, cooling, and refrigeration and for operating appliances, computers, electronics, machinery, and public transportation systems.
Hope it helped you.
When you rub a balloon on a sweater, for example, some electrons come off and end up on the balloon. The fibers have lost electrons giving them a positive charge. The rubber gained electrons giving it a negative charge. ... The positively charged fibers are now attracted to the negatively charged balloon.
Answer:
0.15625 grams
Explanation:
Half life: It is related to the decay of radioactive material. The duration in which half of the material will be degraded/decayed. That means after half life 50% of the radioactive material will be left. Here the half life is 28 years.
Initial quantity of the sample: 2.5 grams.
After 28 years, the leftover quantity = 1.25 grams
After 56 years, the leftover quantity = 0.625 grams
After 84 Years, the leftover quantity = 0.3125 grams
After 112 years, the leftover quantity = 0.15625 grams
Answer:
The inductor contains
loops
Explanation:
From the question we are told that
The capacitance of the capacitor is 
The resonance frequency is 
The diameter is 
The of the air-core inductor is 
The permeability of free space is 
Generally the inductance of this air-core inductor is mathematically represented as

This inductance can also be mathematically represented as

Where
is the angular speed mathematically given as

So

Now equating the both formulas for inductance

making N the subject of the formula


Substituting value
loops
Explanation:
Use the magnitude and direction of each vector to find its components. Add the components that are along the same dimension. Then use Pythagorean theorem and trigonometry to find the magnitude and direction of the resultant vector.
For example, if we have a vector of magnitude A and direction α, and another vector of magnitude B and direction β, then the components of the first vector are:
Ax = A cos α
Ay = A sin α
And the components of the second vector are:
Bx = B cos β
By = B sin β
The resultant vector (we'll call it C) has components:
Cx = Ax + Bx
Cy = Ay + By
The magnitude of the resultant vector is:
C = √(Cx² + Cy²)
And the direction of the resultant vector is:
θ = atan(Cy/Cx)