Answer: wavelength=velocity×period
Explanation:the relation between velocity, wavelength and period is
Wavelength=velocity×period
Answer:
decreases
Explanation:
Remeber:
There is always inverse relation between frequency and wavelength.
So if one of them increases, other decreases and vice-versa.
f ∝ 1 / λ
The magnitude of the unknown height of the projectile is determined as 16.1 m.
<h3>
Magnitude of the height</h3>
The magnitude of the height of the projectile is calculated as follows;
H = u²sin²θ/2g
H = (36.6² x (sin 29)²)/(2 x 9.8)
H = 16.1 m
Thus, the magnitude of the unknown height of the projectile is determined as 16.1 m.
Learn more about height here: brainly.com/question/1739912
#SPJ1
and closing
.
The heart has 4 valves. They are what makes the lub-dub lub-dub sounds that can be heard from the chest.
The mitral valve is located between the left atrium and the left ventricle. It closes the left atrium to collect oxygenated blood from the lungs and opens to pass it on to the left ventricle.
The tricuspid valve is located between the right atrium and the right ventricle. It closes the right atrium to hold unoxygenated blood and opens to pass it on to the right ventricle ensuring a one way flow.
The aortic valve is located between the aorta and the left ventricle. It closes the left ventricle and opens to the aorta to pass on the oxygen-rich blood to the body.
The pulmonary valve is located between the pulmonary artery and the right ventricle. It closes off the right ventricle and opens to pass on unoxygenated blood to the lungs.
Answer: option A. strong nuclear force.
Explanation:
The diagram shows the subatomic particles inside the nucelous: protons and neutrons.
As you know, the protons are positively charged partilces inside the nucleous.
Being those particles charged with the same kind of charge they experiment electrostatic repulsion. So, how do you explain that they can stand together in such small space as it is the nucleous?
The responsible of keeping the subatomic particles together is the so called strong nuclear force.
Strong nuclear force or simply strong force is one of the four fundamental interactions or forces: i) gravitational, ii) electromagnetic, iii) weak nuclear force, and iv) strong nuclear force.
Strong nuclear force is the strongest force of nature and acts only in short distances as those inside the nucleous and is responsible for both the atraction among quarks and the atraction among protons to bind them together inside the atomic nucleous.