The direction of an electric current is by convention the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and toward the negative terminal of the battery. Electrons would actually move through the wires in the opposite direction.
Answer:
When a man travels from Hilly region to Terai region, his weight gradually increases because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
Explanation:
because the value of g is more at the Terai region than that in hilly region. 3. An object weights 20 N in air and 16 N in liquid, then answer the following questions.
The terminal velocity as it falls through still air is 4.65154 in/s.
The diameter of small water droplet is 1.25 mil= 1.25×0.0254×10^-3 m
= 3.175 × 10^-5 m
Now the viscosity of still air is η = 1.83× 10⁻⁵ Pa
So the formula for drag force is:
Fd = 6πηrv
where, v is the velocity.
Now to attain terminal velocity acceleration must be zero.
→ W = Fd
ρVg = 6πrηv
ρ × 4/3 πr³×g = 6πrηv
v = 2/9 × ρgr³/ η
v = 2/9 × 10³×9.81×(3.175×10^-3) / 18.6×10^-6
v = 0.1181 m/s
v = 4.65154 in/s
Learn more about terminal velocity here:
brainly.com/question/20409472
#SPJ4
A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
<h3>What is acceleration?</h3>
Acceleration is the change in velocity over time.
A plane is flying initially at 100 m/s (u) and it accelerates to 150 m/s (v) in 10 s (t). We can calculate its acceleration using the following expression.
a = v - u / t = (150 m/s - 100 m/s) / 10 s = 5 m/s²
A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.
Learn more about acceleration here: brainly.com/question/14344386
#SPJ1
8/4 = y/y-x
8y - 8x = 4y
y = 2x
y = 2 x 4
y = 8
Hope this helps