Explanation:
The given reaction is as follows.
![E + S \rightleftharpoons ES \xrightarrow[]{k_{2}} E + P](https://tex.z-dn.net/?f=E%20%2B%20S%20%5Crightleftharpoons%20ES%20%5Cxrightarrow%5B%5D%7Bk_%7B2%7D%7D%20E%20%2B%20P)
Here, [E] = triose phosphate isomerase = 0.1 
[S] = Dihydroxy acetone phosphate = 5 
[P] = Glyceraldehyde-3-phosphate = 2 
Therefore, velocity of the reaction will be as follows.
v =
= ![\frac{K_{2}[E][S]}{K_{M} + [S]}](https://tex.z-dn.net/?f=%5Cfrac%7BK_%7B2%7D%5BE%5D%5BS%5D%7D%7BK_%7BM%7D%20%2B%20%5BS%5D%7D)
where,
= Michaelic menten constant = 
v = 
= 
or, = 30 nm/s
Hence, we can conclude that the actual velocity of the forward reaction under physiologic conditions if KM = 10 μM is 30 nm/s.
<span>In order to figure out the number of atoms that are present in 2.0 mol of an element, you would multiply Avogadro's number of atoms per mole by 2.0 mole. Avogadro’s is the number of units in one mole of a substance equal to 6.022140857 × 1023.</span>
Answer:
It is used to measure size or distance.
Answer: There is a single covalent bond in a chlorine molecule.
Explanation: The chlorine molecule is represented as Cl−Cl, i.e. C
l2. Between the chlorine atoms, 2 electrons overlap to form a region of high electron density to which the positively charged chlorine nuclei are attracted, such that internuclear repulsion is negated and a net attractive force results. Because the bonding electrons are shared between the nuclei, we conceive that each atom has 8 valence electrons.
Of course, on reaction with sodium, the sodium reduces the chlorine molecule to give 2×Cl−. The resultant bond between Na+ and Cl−is ionic and a non-molecular substance results.
You can call me Kat ᓚᘏᗢ