1) The longer the quarrying goes on the less and less recources we will have, soon leading to no more recources
The answer is 1/16.
Half-life is the time required for the amount of a sample to half its value.
To calculate this, we will use the following formulas:
1.

,
where:
<span>n - a number of half-lives
</span>x - a remained fraction of a sample
2.

where:
<span>

- half-life
</span>t - <span>total time elapsed
</span><span>n - a number of half-lives
</span>
So, we know:
t = 10 min
<span>

= 2.5 min
We need:
n = ?
x = ?
</span>
We could first use the second equation to calculate n:
<span>If:

,
</span>Then:

⇒

⇒

<span>
</span>
Now we can use the first equation to calculate the remained fraction of the sample.
<span>

</span>⇒

<span>⇒

</span>
Answer:
Δ S = 26.2 J/K
Explanation:
The change in entropy can be calculated from the formula -
Δ S = m Cp ln ( T₂ / T₁ )
Where ,
Δ S = change in entropy
m = mass = 2.00 kg
Cp =specific heat of lead is 130 J / (kg ∙ K) .
T₂ = final temperature 10.0°C + 273 = 283 K
T₁ = initial temperature , 40.0°C + 273 = 313 K
Applying the above formula ,
The change in entropy is calculated as ,
ΔS = m Cp ln ( T₂ / T₁ ) = (2.00 )( 130 ) ln( 283 K / 313 K )
ΔS = 26.2 J/K
I believe the answer would be A. Electronegativity increases across a period.