Answer: E
=
1.55
⋅
10
−
19
J
Explanation:
The energy transition will be equal to 1.55
⋅
10
−
1
J
.
So, you know your energy levels to be n = 5 and n = 3. Rydberg's equation will allow you calculate the wavelength of the photon emitted by the electron during this transition
1
λ =
R
⋅
(
1
n
2
final −
1
n
2
initial )
, where
λ
- the wavelength of the emitted photon;
R
- Rydberg's constant - 1.0974
⋅
10
7
m
−
1
;
n
final
- the final energy level - in your case equal to 3;
n
initial
- the initial energy level - in your case equal to 5.
So, you've got all you need to solve for λ
, so
1
λ =
1.0974
⋅10 7
m
−
1
⋅
(....
−152
)
1
λ
=
0.07804
⋅
10
7
m
−
1
⇒
λ
=
1.28
⋅
10
−
6
m
Since
E
=
h
c
λ
, to calculate for the energy of this transition you'll have to multiply Rydberg's equation by
h
⋅
c
, where
h
- Planck's constant -
6.626
⋅
10
−
34
J
⋅
s
c
- the speed of light -
299,792,458 m/s
So, the transition energy for your particular transition (which is part of the Paschen Series) is
E
=
6.626
⋅
10
−
34
J
⋅
s
⋅
299,792,458
m/s
1.28
⋅
10
−
6
m
E
=
1.55
⋅
10
−
19
J
The statements that are actually correct among the given options are:
<span>Valence electrons are transferred to the oxygen atom.
</span>The bond length <span>is less than the sum of the two atomic radii.
</span><span>Bonding electrons are stationary in the CO molecule
</span>So the correct option among all the options that are given in the question is the fourth option or option "D".
Stirring faster, heating up the substance
By stirring faster, more of the solute/solvent come in contact faster.
By heating up a substance, the same things happens.
Hope this helps!