The correct option is D. 2) Anti-bonding electrons or lone pairs. These lone pairs, and bonds helps to form the shape which keeps these electrons separate as possible.
Answer:
0.200 m K3PO3
Explanation:
Let us remember that the freezing point depression is obtained from the formula;
ΔTf = Kf m i
Where;
Kf = freezing point constant
m = molality
i = Van't Hoff factor
The Van't Hoff factor has to do with the number of particles in solution. Let us consider the Van't Hoff factor for each specie.
0.200 m HOCH2CH2OH - 1
0.200 m Ba(NO3)2 - 3
0.200 m K3PO3 - 4
0.200 m Ca(CIO4)2 - 3
Hence, 0.200 m K3PO3 has the greatest van't Hoff factor and consequently the greatest freezing point depression.
Molar solubility of AgCl will be 0.59 ×
M.
The amount of a chemical that can dissolve in one liter of a solution before reaching saturation is known as its molar solubility. This implies that the quantity of a substance it can disintegrate in a solution even before the solution becomes saturated with that particular substance is determined by its molar solubility.
A compound's molar solubility would be the measure of how many moles of such a compound must dissolve to produce one liter of saturated solution. The molar solubility unit will be mol L-1.
Calculation of molar solubility:
Given data:
M = 0.30 M
= 1.77 × 
The reaction can be written as:
AgCl ⇔ 
s s (s+0.30)
= [
]+ [
]
1.77 ×
= s (0.30)
s = 1.77 ×
/ 0.3
s = 0.59 ×
M
Therefore, molar solubility of AgCl will be 0.59 ×
M.
To know more about molar solubility
brainly.com/question/16243859
#SPJ4
Answer:
True.
Hope this helps!
let me know if u get it right
Answer:
<h2>14.85 moles </h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>14.85 moles</h3>
Hope this helps you