1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ella [17]
3 years ago
15

(a) What is the entropy change of a 14.6 g ice cube that melts completely in a bucket of water whose temperature is just above t

he freezing point of water?
(b) What is the entropy change of a 5.51 g spoonful of water that evaporates completely on a hot plate whose temperature is slightly above the boiling point of water?
Physics
1 answer:
Alex73 [517]3 years ago
8 0

Answer:

a) 17.81 J/K

b) 33.325 J/K

Explanation:

The expression to use here is the following:

ΔS = Q/T

Where:

Q: heat released or absorbed

T: Temperature in K

Now, in order to do this, we need to gather the data. We know that the temperature in part a) is above the freezing temperature of water, which is 0 ° C or 273 K. and the mass of the ice cube is 14.6 g.

a) Using the water heat of fusion (Cause it's melting), we can calculated the heat released using the following expression:

Q = m * Lf

Lf = 333,000 J/kg

Solving for Q first we have:

Q = (14.6 / 1000) * 333,000

Q = 4,861.8 J

Now, the entropy change is:

ΔS = 4,861.8 / 273

ΔS = 17.81 J/K

b) In this part, we follow the same procedure than in part a) but using the water heat of boiling (Lv = 2,256,000 J/kg), the temperature of boiling which is 100 °C (or 373 K) and the mass of 5.51 g (0.00551 kg)

Calculating the heat:

Q = 0.00551 * 2,256,000 = 12,430.56 J

Now the entropy change:

ΔS = 12,430.56 / 373

ΔS = 33.325 J/K

You might be interested in
(pleases show work)
Feliz [49]

a. 46 m/s east

The jet here is moving with a uniform accelerated motion, so we can use the following suvat equation to find its velocity:

v=u+at

where

v is the velocity calculated at time t

u is the initial velocity

a is the acceleration

The jet in the problem has, taking east as positive direction:

u = +16 m/s  is the initial velocity

a=+3 m/s^2  is the acceleration

Substituting t = 10 s, we find the final velocity of the jet:

v=16 + (3)(10)=46 m/s

And since the result is positive, the direction is east.

b. 310 m

The displacement of the jet can be found using another suvat equation

s=ut+\frac{1}{2}at^2

where

s is the displacement

u is the initial velocity

a is the acceleration

t is the time

For the jet in this problem,

u = +16 m/s  is the initial velocity

a=+3 m/s^2  is the acceleration

t = 10 s is the time

Substituting into the equation,

s=(16)(10)+\frac{1}{2}(3)(10)^2=310 m

4 0
3 years ago
Two equal, but oppositely charged particles are attracted to each other electrically. The size of the force of attraction is 48.
galina1969 [7]

Given:

The force of attraction is F = 48.1 N

The separation between the charges is

\begin{gathered} r=\text{ 60.9 cm} \\ =\text{ 60.9}\times10^{-2}\text{ m} \end{gathered}

Also, the magnitude of charge q1 = q2 = q.

To find the magnitude of charge.

Explanation:

The magnitude of charge can be calculated by the formula

\begin{gathered} F=\frac{k(2q)}{r^2} \\ q=\frac{Fr^2}{2k} \end{gathered}

Here, k is the Coulomb's constant whose value is

k\text{ = 9}\times10^9\text{ N m}^2\text{ /C}^2

On substituting the values, the magnitude of charge will be

\begin{gathered} q=\frac{48.1\times(60.9^\times10^{-2})^2}{2\times9\times10^{^9}} \\ =9.91\times10^{-10}\text{ C} \\ =9.91\times10^{-4}\text{ }\mu C \end{gathered}

Thus, the magnitude of each charge is 9.91 x 10^(-4) micro Coulombs.

6 0
2 years ago
Which refers to any disturbance that carries energy from one place to another through matter and space?
Black_prince [1.1K]
I think frequency it sounds like the correct answer but I am not completely sure if I am correct
4 0
3 years ago
Read 2 more answers
Please help me with this
Firlakuza [10]

Answer:

can't see anything sorry can't help

7 0
3 years ago
Read 2 more answers
A 75 W lightbulb is being run on a 110 V outlet. Determine the resistance of the lightbulb. Provide a detailed description of th
Sauron [17]
Power is defined as

P = I*V

where I is the current and V is the voltage

Ohm's law gives us the relation betwen Voltage and current in a resistive component

V = I*R ,  Then

P = V² / R

We solve for R,

R = (110 V)²/ 75W =  161.33 ohms
8 0
3 years ago
Other questions:
  • When checking for noncondensables inside a recovery cylinder why should the technician allow the temperature of the cylinder to
    13·1 answer
  • A soccer player hits a ball with a velocity of 22 m/s at an angle of 36.9 above the horizontal. Air resistance can be ignored. a
    14·1 answer
  • What Do You Already Know about Density? Material Design. Number each material and sort the items in order from lowest (1) to hig
    7·1 answer
  • Monochromatic light falls on two very narrow slits 0.044 mm apart. Successive fringes on a screen 6.50 m away are 8.1 cm apart n
    7·1 answer
  • A bicycle traveled 150 meters west from point A to point B. Then it took the same route and came back to point A. It took a tota
    8·1 answer
  • If a girl does 1,350 Joules of work to pedal her bike using a force of 75 N, how far did she ride her bike?
    5·1 answer
  • Please help me
    12·1 answer
  • Match the variables with quantities
    14·1 answer
  • Start from 0 m/s and accelerate at 2m/s? Calculate the speed in m/s after acceleration for 5 seconds.
    11·1 answer
  • 9.00 V is applied to a wire with a
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!