<span>Name of type of mechanism </span>initiation step<span> first </span>propagation step<span> second </span>propagation step<span>(ii) </span>write<span> an overall </span>equation<span> for the </span>formation of dichloromethane<span> from ... Best Answer: i) This is a </span>free-radical<span> substitution mechanism.</span>
.
Oxygen-16 is the atom in question.
- Atomic number: 8.
- Mass number: 16.
<h3>Explanation</h3>
The superscript of the ion says "2-". That means that the ion here carries a charge of -2.
- The charge is negative, meaning that there are more electrons (which are negative) than protons (which are positive) in that ion.
- The size of the charge is 2. There are two more electrons than protons in that ion.
There are 10 electrons in total in that ion. There are two more electrons than protons. That means that there are 10 - 2 = 8 protons in that ion.
The atomic number of an atom is the same as its number of protons. The atomic number of X is 8.
The atomic number determines the element. Atomic number 8 is oxygen. Thus element X is oxygen.
Mass number is the sum of number of protons and neutrons in an atom. 8 + 8 = 16 for this atom.
U can assume that riding the bus is a faster way to get to school because it is capable of a faster speed than a bicycle
The percent yield of the reaction between ammonia gas with oxygen gas is 90.52%.
A chemical reaction between ammonia gas (NH3) with oxygen gas (O2)
NH₃ + O₂ → NO₂ + H₂O
The balanced reaction 4NH₃ + 7O₂ → 4NO₂ + 6H₂O
Calculate the number of moles from the reactant
- Ammonia gas
Molar mass N = 14 gr/mol
Molar mass H = 1 gr/mol
Molar mass NH₃ = 14 + (3 × 1) = 14 + 3 = 17 gr/mol
mass = 28.5 grams
n = m ÷ molar mass = 28.5 ÷ 17 = 1.68 mol - Oxygen gas
Molar mass O = 16 gr/mol
Molar mass O₂ = 16 × 2 = 32 gr/mol
mass = 83.4 grams
n = m ÷ molar mass = 83.4 ÷ 32 = 2.61 mol - n O₂ ÷ coefficient O₂ = 2.61 ÷ 7 = 0.37
n NH₃ ÷ coefficient NH₃ = 1.68 ÷ 4 = 0.42
0.42 > 0.37 it means that the ammonia gas is in excess and the O₂ is limiting.
According to stoichiometry, the number of moles NO₂ with the number of moles O₂ has the ratio with the coefficient in reaction.
- Theoretically the number moles of NO₂
n O₂ : n NO₂ = 7 : 4
2.61 : n NO₂ = 7 : 4
n NO₂ = 4 x 2.61 : 7 = 1.49 mol - The actual number of moles NO₂
Molar mas NO₂ = 14 + (16 × 2) = 14 + 32 = 46 gr/mol
n NO₂ = m ÷ molar mass = 61.9 ÷ 46 = 1.35 mol
The percent yield NO₂ is the ratio of the actual number of moles NO₂ with the theoretical number of moles NO₂ times 100%.
P = (1.35 ÷ 1.49) × 100%
P = 0.9052 × 100%
P = 90.52%
Learn more about stoichiometry here: brainly.com/question/13691565
#SPJ4