Answer:
A. The average of all the data points
Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.
Answer:
The answer to your question is 6.0 moles of O₂
Explanation:
Data
2KClO₃ ⇒ 2KCl + 3O₂
moles of O₂ = ?
moles of KCl = 4
Process
To find the number of moles of O₂, use proportions and cross multiplication.
Use the coefficients of the balanced equation.
2 moles of KCl ----------------- 3 moles of O₂
4 moles of KCl ----------------- x
x = (4 x 3) / 2
-Simplification
x = 12/2
-Result
x = 6 moles of O₂
-Conclusion
When 4,0 moles of KCl are produced, 6.0 moles of O₂ will be produced.
Using the Rydberg formula, the spectral line of H - atom is suitable for this purpose is Paschen, ∞ → 3.
- Using the Rydberg formula;
1/λ = RH(1/nf^2 - 1/ni^2)
Given that;
λ = wavelength
RH = Rydberg constant
nf = final state
ni = initial state
- When final state = 3 and initial state = ∞
Then;
1/λ = 1 × 10^7 m-1 (1/3^2 - 1/ ∞^2)
1/λ = 1 × 10^7 m-1 (1/3^2 )
λ = 900 nm
Hence, the correct answer is Paschen, ∞ → 3
Learn more about the Rydberg formula; brainly.com/question/17753747
Answer:
0 is your correct answer mark me brainly