Answer:
298,220 N
Explanation:
Let the force on car three is T_23-T_34
Since net force= ma
from newton's second law we have
T_23-T_34 = ma
therefore,
T_23-T_34 = 37000×0.62
T_23= 22940+T_34
now, we need to calculate
T_34
Notice that T_34 is accelerating all 12 cars behind 3rd car by at a rate of 0.62 m/s^2
F= ma
So, F= 12×37000×0.62= 22940×12= 275280 N
T_23 =22940+T_34= 22940+ 275280= 298,220 N
therefore, the tension in the coupling between the second and third cars
= 298,220 N
Light travels at a speed of 299,792 kilometers per second; 186,287 miles per second
Mercury it will take 193.0 seconds(3.2 minutes)
Venus it will take 360.0 seconds(6.0 minutes)
Earth it will take 499.0 seconds(8.3 minutes)
Mars It will take 759.9 seconds(12.6 minutes)
Jupiter It will take 2595.0 seconds(43.2 minutes)
Saturn it will take 4759.0 seconds(79.3 minutes)
Uranus it will take 9575.0 seconds(159.6 minutes)
Neptune it will take 14998.0 seconds(4.1 hours)
Pluto it will take 19680.0 seconds(5.5 hours)
This question can be solved with the help of the equations of motion.
A) The Frisbee will remain in the air for "5.87 s".
B) The frisbee will go "29.4 m" down the range.
A)
To calculate the time, the frisbee will remain in the air, we will use the second <em><u>equation of motion</u></em>, for the vertical motion.

where,
h = height = 169.2 m
vi = initial velocity's vertical component = 0 m/s
g = acceleration due to gravity = 9.81 m/s²
t = time = ?
Therefore,

<u>t = 5.87 s</u>
<u />
B)
Now, we will calculate the horizontal range by applying the equation for constant motion. Because the velocity in the horizontal direction will remain constant due to no air resistance
s = vt
where,
s = horizontal range = ?
v= initial velocity's horizontal component = 5 m/s
t = time = 5.87 s
Therefore,
s = (5 m/s)(5.87 s)
<u>s = 29.4 m</u>
<u />
Learn more about <em><u>equations of motion</u></em> here:
brainly.com/question/9772550?referrer=searchResults
Answer:
Her angular velocity when tucked is greater than when straight by a factor of 0.23
Explanation:
Moment of inertia (I) = mr^2 = mv^2/w^2
m is mass of the diver
v is diver's linear velocity
w is her angular velocity
When straight, I = 14 kg.m^2
mv^2/w^2 = 14
w^2 = mv^2/14
w = sqrt(mv^2/14) = 0.27sqrt(mv^2)
When tucked, I = 4 kg.m^2
w^2 = mv^2/4
w = sqrt(mv^2/4) = 0.5sqrt(mv^2)
Her angular velocity when tucked is greater than when straight by 0.23 (0.5 - 0.27 = 0.23)
Explanation:
The matter passes in the directions of the noise and flows from the source to a receiver like sound flows through a substance. As the sound flows through a fluid, the material is disrupted for an amount of time, but after the sound leaves, it restored to its normal location.