1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
3 years ago
6

A student in Denver (altitude = 1 mile = 1609 m above sea level) brings a physics book of mass 1.3 kg to the top of a ten story

building of height 26 m and holds the book over her head 151 cm above the roof. What is the gravitational potential energy Ug of the book?
Physics
1 answer:
Nesterboy [21]3 years ago
8 0

Answer:

Explanation:

Potential energy is the energy of a body due to is virtue of rest.

Potential energy is given as mgh

g is a constant and it is 9.81m/s²

And also the mass of the body is given as 1.3kg

Now the height of the body is

He took a book to a storey building of height 26m

He still holds the book 151 cm (1.51m) above the house.

The house is on an altitude of 1609m from the sea level.

Total Ug with out the sea level is

Ug=mgh

Ug=1.3 × 9.81 ×(26+1.51)

Ug=350.84J

Then, the potential energy due to the sea level is given as

Ug=mgh

Where g = 1/6371 m/s²

Therefore

Ug=mgh

Ug=1.3 × 1/6371 ×1609

Ug=0.328J

Total energy = 0.328+350.84

Ug=351.17J

You might be interested in
If the potential difference across a 12-ohm resistor is 6 volts, the current through the resistor is?
larisa86 [58]
Current is inversely proportional to the resistance of the resistor and directly to the potential difference across it.

I = V/R = 6/12 = 0.5 A
4 0
3 years ago
It is necessary to determine the specific heat of an unknown object. The mass of the object is 201.0 g. It is determined experim
navik [9.2K]
Mass = 0.201kg
Energy = 15J
temperature change = 10C

Energy(E) = mass(m) × specific heat capacity(c) × temperature change(θ)

we can rearrange this to make specific heat capacity the subject

c =\frac{E}{m\theta}

c =\frac{15}{2.01}
c =7.46268657

6 0
3 years ago
Read 2 more answers
A nylon guitar string is fixed between two lab posts 2.00 m apart. The string has a linear mass density of μ=7.20 g/m\mu=7.20~\t
vladimir2022 [97]

Answer:

4.6 m

Explanation:

First of all, we can find the frequency of the wave in the string with the formula:

f=\frac{1}{2L}\sqrt{\frac{T}{\mu}}

where we have

L = 2.00 m is the length of the string

T = 160.00 N is the tension

\mu =7.20 g/m = 0.0072 kg/m is the mass linear density

Solving the equation,

f=\frac{1}{2(2.00 m)}\sqrt{\frac{160.00 N}{0.0072 kg/m}}=37.3 Hz

The frequency of the wave in the string is transmitted into the tube, which oscillates resonating at same frequency.

The n=1 mode (fundamental frequency) of an open-open tube is given by

f=\frac{v}{2L}

where

v = 343 m/s is the speed of sound

Using f = 37.3 Hz and re-arranging the equation, we find L, the length of the tube:

L=\frac{v}{2f}=\frac{343 m/s}{2(37.3 Hz)}=4.6 m

4 0
4 years ago
A 0.80-μm-diameter oil droplet is observed between two parallel electrodes spaced 11 mm apart. The droplet hangs motionless if t
Arisa [49]

A) 2.4\cdot 10^{-16}kg

The radius of the oil droplet is half of its diameter:

r=\frac{d}{2}=\frac{0.80 \mu m}{2}=0.40 \mu m = 0.4\cdot 10^{-6}m

Assuming the droplet is spherical, its volume is given by

V=\frac{4}{3}\pi r^3 = \frac{4}{3}\pi (0.4\cdot 10^{-6} m)^3=2.68\cdot 10^{-19} m^3

The density of the droplet is

\rho=885 kg/m^3

Therefore, the mass of the droplet is equal to the product between volume and density:

m=\rho V=(885 kg/m^3)(2.68\cdot 10^{-19} m^3)=2.4\cdot 10^{-16}kg

B) 1.5\cdot 10^{-18}C

The potential difference across the electrodes is

V=17.8 V

and the distance between the plates is

d=11 mm=0.011 m

So the electric field between the electrodes is

E=\frac{V}{d}=\frac{17.8 V}{0.011 m}=1618.2 V/m

The droplet hangs motionless between the electrodes if the electric force on it is equal to the weight of the droplet:

qE=mg

So, from this equation, we can find the charge of the droplet:

q=\frac{mg}{E}=\frac{(2.4\cdot 10^{-16}kg)(9.81 m/s^2)}{1618.2 V/m}=1.5\cdot 10^{-18}C

C) Surplus of 9 electrons

The droplet is hanging near the upper electrode, which is positive: since unlike charges attract each other, the droplet must be negatively charged. So the real charge on the droplet is

q=-1.5\cdot 10^{-18}C

we can think this charge has made of N excess electrons, so the net charge is given by

q=Ne

where

e=-1.6\cdot 10^{-19}C is the charge of each electron

Re-arranging the equation for N, we find:

N=\frac{q}{e}=\frac{-1.5\cdot 10^{-18}C}{-1.6\cdot 10^{-19}C}=9.4 \sim 9

so, a surplus of 9 electrons.

3 0
3 years ago
A cylinder containing the air comprises the systemm. Cycle is completed as follows : (i) 82000 N-m of work is done by the piston
Stella [2.4K]

Answer & Explanation:

1 N-m = 1 Joule

So 82 kJ of energy put into the system during (i).

45 kJ of heat leaves the system, so 82 kJ - 45 kJ  = 37 kJ is remaining.

(ii) requires 100 kJ of energy but only 37 kJ is available, so 100 kJ - 37 kJ = 63 kJ of heat energy must be added to the system.

4 0
3 years ago
Other questions:
  • Starting from rest, a disk takes 8 revolutions to reach an angular velocity ω at constant angular acceleration. how many additio
    11·1 answer
  • The small piston of a hydraulic lift has a crosssectional area of 2.23 cm2 and the large piston 297 cm2 . What force must be app
    11·1 answer
  • DNA is coiled into chromosomes in a cell's
    6·2 answers
  • A car traveling 75 km/h slows down at a constant 0.50 m/s2 just by "letting up on the gas." calculate (a) the distance the car c
    11·1 answer
  • You have a 6.00 V power supply, and
    14·1 answer
  • How much work do you do when you push a shopping cart with a force of 20 N for a distance of 5m?
    7·1 answer
  • (02.06)plz help me 20 points ​
    14·1 answer
  • The lithosphere contains rocks, soils, and minerals.
    6·2 answers
  • How many milliliters are in 1 liter?
    8·2 answers
  • A cannonball is fired vertically upwards at 100.0 m/s a) How long will it take to return to the cannon? b) what is it's maximum
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!