v = speed of the source of sound or the train towards the listener or switchman = 40 m/s
V = actual speed of sound = 340 m/s
f = actual frequency of sound as emitted from source or the train = 1000 Hz
f' = frequency as observed by the listener or by switchman = ?
Using Doppler's law , frequency observed by a listener from a source moving towards it is given as
f' = V f /(V - v)
inserting the values
f' = 340 x 1000 /(340 - 40)
f' = 340 x 1000/300
Answer:
I do belive that it is B hrs cn I an gn
Answer:
Let the mass of the book be "m", acceleration due to gravity be "g", velocity be "v" and height be "h".
Now if we are holding a book at a certain height (h), <em><u>the potential energy will be maximum which is equal to mass× acceleration due to gravity× height (= mgh)</u>.</em>
(Remember: kinetic energy =0)
Now we consider that the book is dropped, in this case a force will act downward towards the centre of the earth, <em><u>Force= mass× acceleration due to gravity (F=mg)</u></em>. It is equal to the weight of the book.
While the book is falling, the potential energy stored in the book converts into kinetic energy and strikes the floor with <em><u>the maximum kinetic energy= (1/2)×mass×velocity² (=1/2mv²)</u>.</em>
(Remember: kinetic energy=0)
Due to this process the whole energy is conserved.
As the potential energy decreases kinetic energy increases.
An arrow which shows the direction that the probe should be moving in order for it to enter the orbit is X.
<h3>What is an orbit?</h3>
An orbit can be defined as the curved path through which a astronomical (celestial) object such as planet Earth, in space move around a Moon, Sun, planet or star.
In this scenario, if the scientists want the probe to enter the orbit they should ensure that probe moves in direction X. This ultimately implies that, the probe must move in the same direction as the orbit, in order to enter it.
Read more on orbit here: brainly.com/question/18496962
#SPJ1
Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:

where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).