The answer is d, gravity is the only force acting on the object
His total displacement from his original position is -1 m
We know that total displacement of an object from a position x to a position x', d = final position - initial position.
d = x' - x
If we assume the lad's initial position in front of her house is x = 0 m. The lad then moves towards the positive x-axis, 5 m. He then ends up at x' = 5 m. He then finally goes back 6 m.
Since displacement = final position - initial position, and his displacement is d' = -6 m (since he moves in the negative x - direction or moves back) from his initial position of x' = 5 m.
His final position, x" after moving back 6 m is gotten from
x" - x' = -6 m
x" = -6 + x'
x" = -6 + 5
x" = -1 m
Thus, his total displacement from his original position is
d = final position - initial position
d = x" - x
d = -1 m - 0 m
d = -1 m
So, his total displacement from his original position is -1 m
Learn more about displacement here:
brainly.com/question/17587058
The red, yellow, and green wavelengths of sunlight are absorbed by water molecules in the ocean. ... In coastal areas, runoff from rivers, resuspension of sand and silt from the bottom by tides, waves and storms and a number of other substances can change the color of the near-shore waters.
Answer:
a) m =1 θ = sin⁻¹ λ / d, m = 2 θ = sin⁻¹ ( λ / 2d)
, c) m = 3
Explanation:
a) In the interference phenomenon the maxima are given by the expression
d sin θ = m λ
the maximum for m = 1 is at the angle
θ = sin⁻¹ λ / d
the second maximum m = 2
θ = sin⁻¹ ( λ / 2d)
the third maximum m = 3
θ = sin⁻¹ ( λ / 3d)
the fourth maximum m = 4
θ = sin⁻¹ ( λ / 4d)
b) If we take into account the effect of diffraction, the intensity of the maximums is modulated by the envelope of the diffraction of each slit.
I = I₀ cos² (Ф) (sin x / x)²
Ф = π d sin θ /λ
x = pi a sin θ /λ
where a is the width of the slits
with the values of part a are introduced in the expression and we can calculate intensity of each maximum
c) The interference phenomenon gives us maximums of equal intensity and is modulated by the diffraction phenomenon that presents a minimum, when the interference reaches this minimum and is no longer present
maximum interference d sin θ = m λ
first diffraction minimum a sin θ = λ
we divide the two expressions
d / a = m
In our case
3a / a = m
m = 3
order three is no longer visible