1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andreyandreev [35.5K]
3 years ago
13

The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This sp

itting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers.When an archerfish is hunting, its body shape allows it to swim very close to the water surface and look upward without creating a disturbance. The fish can then bring the tip of its mouth close to the surface and shoot the drops of water at the insects resting on overhead vegetation or floating on the water surface.At what speed v should an archerfish spit the water to shoot down an insect floating on the water surface located at a distance 0.800 m from the fish? Assume that the fish is located very close to the surface of the pond and spits the water at an angle 60∘ above the water surface.
Physics
1 answer:
Delvig [45]3 years ago
7 0

Answer:

Explanation:

Here is the full question and answer,

The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This spitting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers.

When an archerfish is hunting, its body shape allows it to swim very close to the water surface and look upward without creating a disturbance. The fish can then bring the tip of its mouth close to the surface and shoot the drops of water at the insects resting on overhead vegetation or floating on the water surface.

Part A: At what speed v should an archerfish spit the water to shoot down a floating insect located at a distance 0.800 m from the fish? Assume that the fish is located very close to the surface of the pond and spits the water at an angle 60 degrees above the water surface.

Part B: Now assume that the insect, instead of floating on the surface, is resting on a leaf above the water surface at a horizontal distance 0.600 m away from the fish. The archerfish successfully shoots down the resting insect by spitting water drops at the same angle 60 degrees above the surface and with the same initial speed v as before. At what height h above the surface was the insect?

Answer

A.) The path of a projectile is horizontal and symmetrical ground. The time is taken to reach maximum height, the total time that the particle is in flight will be double that amount.

Calculate the speed of the archer fish.

The time of the flight of spitted water is,

t = \frac{{2v\sin \theta }}{g}

Substitute 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g and 60^\circ  for \theta in above equation.

t = \frac{{2v\sin 60^\circ }}{{9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}}}\\\\ = \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\  

Spitted water will travel 0.80{\rm{ m}} horizontally.

Displacement of water in this time period is

x = vt\cos \theta

Substitute \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2} for t\rm 60^\circ[tex] for [tex]\theta and 0.80{\rm{ m}} for x in above equation.

\\0.80{\rm{ m}} = v\left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\left( {\cos 60^\circ } \right)\\\\0.80{\rm{ m}} = {v^2}\left( {0.1767{\rm{ }}} \right)\frac{1}{2}{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\\\v = \sqrt {\frac{{2\left( {0.80{\rm{ m}}} \right)}}{{0.1767\;{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}}}} \\\\ = 3.01{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

B.) There are two component of velocity vertical and horizontal. Calculate vertical velocity and horizontal velocity when the angle is given than calculate the time of flight when the horizontal distance is given. Value of the horizontal distance, angle and velocity are given. Use the kinematic equation to solve the height of insect above the surface.

Calculate the height of insect above the surface.

Vertical component of the velocity is,

{v_v} = v\sin \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_v} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\sin 60^\circ \\\\ = 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

Horizontal component of the velocity is,

{v_h} = v\cos \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_h} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\cos 60^\circ \\\\ = 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

When horizontal ({0.60\;{\rm{m}}} distance away from the fish.  

The time of flight for distance (d) is ,

t = \frac{d}{{{v_h}}}

Substitute 0.60\;{\rm{m}} for d and 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_h} in equation t = \frac{d}{{{v_h}}}

\\t = \frac{{0.60\;{\rm{m}}}}{{1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}}}\\\\ = 0.3987{\rm{ s}}\\

Distance of the insect above the surface is,

s = {v_v}t + \frac{1}{2}g{t^2}

Substitute 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_v} and 0.3987{\rm{ s}} for t and - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g in above equation.

\\s = \left( {2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\left( {0.3987{\rm{ s}}} \right) + \frac{1}{2}\left( { - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}} \right){\left( {0.3987{\rm{ s}}} \right)^2}\\\\ = 0.260{\rm{ m}}\\

You might be interested in
If chris throws a baseball 60 meters in 4 seconds, what is the average speed of the football?
IceJOKER [234]
The average speed of the football is 15 meters per second. Just divide both of the numbers by 4 :)
6 0
4 years ago
Find the slit separation of a double-slit arrangement that will produce interference fringes 0.018 rad apart on a distant screen
inessss [21]

Answer:

1.64 * 10^(-5) m

Explanation:

Parameters given:

Angular separation, θ = 0.018 rad

Wavelength, λ = 589 nm = 5.89 * 10^(-7) m

The angular separation when there are 2 slots is given as

θ = λ/2d

where d = separation between slits

d = λ/2θ

d = (589 * 10^(-9))/(2 * 0.018)

d = 1.64 * 10^(-5) m

5 0
3 years ago
What's saturns rotation
xeze [42]
The way it rotates is Counter-clockwise
4 0
4 years ago
Help please hurry! ‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️‼️
eimsori [14]
IV - Temperature
DV - Light intensity
8 0
3 years ago
3.
ratelena [41]

Answer:

1.84 kJ  (kilojoules)

Explanation:

A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.

If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:

Heat = (specific heat)*(mass)*(temp change)

Heat = (0.46 J/g Cº)*(50g)*(100° C -  20° C)

[Note how the units cancel to yield just Joules]

Heat = 1840 Joules, or 1.84 kJ

[Note that the number is positive:  Energy is added to the system.  If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C).  The number is -1.84 kJ:  the negative means heat was removed from the system (the iron).

8 0
2 years ago
Other questions:
  • Protons have a blank change
    9·2 answers
  • What is the second largest watershed by drainage area in north america?
    5·1 answer
  • Of waterfalls with a height of more than 50 m , Niagara Falls in Canada has the highest flow rate of any waterfall in the world.
    12·1 answer
  • A mobile travels 98 km in 2h calculate: a) your speed b) how many kilometers will you travel in 3h with the same speed?
    6·1 answer
  • A 1445-kg car,c, moving east at 21.2m/s, collides with a 2625-kg car,d,moving south at 17.5 m/s, and the cars stick together. In
    5·1 answer
  • A jet transport with a landing speed of 200 km/h reduces its speed to 60 km/h with a negative thrust R from its jet thrust rever
    8·1 answer
  • The kinetic energy of a 10 Kg ball rolling at 10 meters per second is how many joules
    8·1 answer
  • A mechanic needs to replace the motor for a merry-go-round. The merry-go-round should accelerate from rest to 1.5 rad/s in 7.0 s
    15·1 answer
  • "In a Young's double-slit experiment, the slit separation is doubled. To maintain the same fringe spacing on the screen, the scr
    8·1 answer
  • PLEASE HELP!!!!!!! A student is trying to demonstrate static electricity, so they rub two identical balloons with a neutral rabb
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!