The particles in a liquid are extremely fast, not faster than a gas, but faster than a solid. The way the particles move allow you to get volume but not area for it doesn't have a defiant shape
Answer:
The magnitude of the voltage is
and the direction of the current is clockwise.
Explanation:
Given that,
Number of turns = 9
Magnetic field = 0.5 T
Diameter = 3 cm
Time t = 0.14 s
We need to calculate the flux
Using formula of flux
![\phi=NAB](https://tex.z-dn.net/?f=%5Cphi%3DNAB)
Put the value into the formula
![\phi=9\times\pi\times(1.5\times10^{-2})^2\times0.5](https://tex.z-dn.net/?f=%5Cphi%3D9%5Ctimes%5Cpi%5Ctimes%281.5%5Ctimes10%5E%7B-2%7D%29%5E2%5Ctimes0.5)
![\phi=0.003180](https://tex.z-dn.net/?f=%5Cphi%3D0.003180)
We need to calculate the emf
Using formula of emf
![\epsilon=-\dfrac{d\phi}{dt}](https://tex.z-dn.net/?f=%5Cepsilon%3D-%5Cdfrac%7Bd%5Cphi%7D%7Bdt%7D)
![\epsilon=-\dfrac{0.003180}{0.14}](https://tex.z-dn.net/?f=%5Cepsilon%3D-%5Cdfrac%7B0.003180%7D%7B0.14%7D)
![\epsilon =-0.000227\ V](https://tex.z-dn.net/?f=%5Cepsilon%20%3D-0.000227%5C%20V)
![\epsilon=-2.27\times10^{-4}\ V](https://tex.z-dn.net/?f=%5Cepsilon%3D-2.27%5Ctimes10%5E%7B-4%7D%5C%20V)
Negative sign shows the direction of current.
Hence, The magnitude of the voltage is
and the direction of the current is clockwise.
By the work energy theorem, the total work done on the stone is given by its change in kinetic energy,
![W = \Delta K = \dfrac m2 ({v_2}^2 - {v_1}^2)](https://tex.z-dn.net/?f=W%20%3D%20%5CDelta%20K%20%3D%20%5Cdfrac%20m2%20%28%7Bv_2%7D%5E2%20-%20%7Bv_1%7D%5E2%29)
We have
![\vec v_1 = (6.60\,\vec\imath - 2.40\,\vec\jmath)\dfrac{\rm m}{\rm s} \implies {v_1}^2 = \|\vec v_1\|^2 = 49.32 \dfrac{\rm m^2}{\rm s^2}](https://tex.z-dn.net/?f=%5Cvec%20v_1%20%3D%20%286.60%5C%2C%5Cvec%5Cimath%20-%202.40%5C%2C%5Cvec%5Cjmath%29%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%20%5Cimplies%20%7Bv_1%7D%5E2%20%3D%20%5C%7C%5Cvec%20v_1%5C%7C%5E2%20%3D%2049.32%20%5Cdfrac%7B%5Crm%20m%5E2%7D%7B%5Crm%20s%5E2%7D)
![\vec v_2 = (8.00\,\vec\imath + 4.00\,\vec\jmath) \dfrac{\rm m}{\rm s} \implies {v_2}^2 = \|\vec v_2\|^2 = 80.0\dfrac{\mathrm m^2}{\mathrm s^2}](https://tex.z-dn.net/?f=%5Cvec%20v_2%20%3D%20%288.00%5C%2C%5Cvec%5Cimath%20%2B%204.00%5C%2C%5Cvec%5Cjmath%29%20%5Cdfrac%7B%5Crm%20m%7D%7B%5Crm%20s%7D%20%5Cimplies%20%7Bv_2%7D%5E2%20%3D%20%5C%7C%5Cvec%20v_2%5C%7C%5E2%20%3D%2080.0%5Cdfrac%7B%5Cmathrm%20m%5E2%7D%7B%5Cmathrm%20s%5E2%7D)
Then the total work is
![W = \dfrac{2.40\,\rm kg}2 \left(80.0\dfrac{\rm m^2}{\rm s^2} - 49.32\dfrac{\rm m^2}{\rm s^2}\right) \approx \boxed{36.8\,\rm J}](https://tex.z-dn.net/?f=W%20%3D%20%5Cdfrac%7B2.40%5C%2C%5Crm%20kg%7D2%20%5Cleft%2880.0%5Cdfrac%7B%5Crm%20m%5E2%7D%7B%5Crm%20s%5E2%7D%20-%2049.32%5Cdfrac%7B%5Crm%20m%5E2%7D%7B%5Crm%20s%5E2%7D%5Cright%29%20%20%5Capprox%20%5Cboxed%7B36.8%5C%2C%5Crm%20J%7D)
Answer:
According to the Conservation of Momentum,
Momentum of the gun = momentum of the bullet
M(gun)×V(gun)=m(bullet)×v(bullet)
4kg × V = 0.3kg × 600m/s²
V = (0.3 × 600)/4 = 45 m/s
The recoil velocity on the gun is <em><u>45 m/s</u></em>
<h3><u>45 m/s</u> is the right answer.</h3>
Answer:
The frequency of infrared wave is 35.385 GHz
Explanation:
Given data:
Wavelength of infrared light = 8.45 mm = 8.45 x
m
Velocity of infrared light = 2.99 x
m/s
To find: frequency of the infrared wave = ?
We know that the wavelength and frequency are inversely proportional and the formula to derive frequency with velocity and wavelength is:
c = μλ, where
c is velocity of light
μ is frequency of light
λ is wavelength of light
Hence the frequency of light μ = c/λ
= ![\frac{2.99 x 10^{8} m/s }{8.45 x 10^{-3}m }](https://tex.z-dn.net/?f=%5Cfrac%7B2.99%20x%2010%5E%7B8%7D%20m%2Fs%20%7D%7B8.45%20x%2010%5E%7B-3%7Dm%20%7D)
=
x
![s^{-1}](https://tex.z-dn.net/?f=s%5E%7B-1%7D)
= 35.385 x
Hz (since 1
= 1 Hz)
= 35.385 GHz