Answer:
- Fx = -9.15 N
- Fy = 1.72 N
- F∠γ ≈ 9.31∠-10.6°
Explanation:
You apparently want the sum of forces ...
F = 8.80∠-56° +7.00∠52.8°
Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...
f∠α = (-f·cos(α), -f·sin(α))
This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.
= -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))
≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)
≈ (-9.15309, 1.71982)
The resultant component forces are ...
Then the magnitude and direction of the resultant are
F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)
F∠γ ≈ 9.31∠-10.6°
Yes!
I think there are two ways you could go with this answer:
1) Acceleration is the change in velocity over time, it can be negative or positive. If you have an object that is already moving forwards in a straight line and give it a constant negative acceleration, it will slow down and then start going in reverse.
2)Velocity is a vector, meaning it has both magnitude and direction. In the example above, the acceleration is due to a change in magnitude, or speed (from +ve to -ve) but not a change in direction. Something that has constant speed but is changing direction is also accelerating (like something that is orbiting). You could use the earth as an example, which is constantly accelerating due to moving in a circle around the sun. At any time in the year you can say that in half a year's time the earth's direction will be reversed.
Answer:
5 m/s2, left
Explanation:
We can solve the problem by applying Newton's second law of motion, which states that:

where:
is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have:
(to the left) is the net force on the object
m = 2.0 kg is the mass
So, the acceleration is:
in the same direction as the force (left).
Answer:

Explanation:
The frequency of a wave can be found using the following formula.

where <em>f</em> is the frequency, <em>v</em> is the velocity/wave speed, and λ is the wavelength.
The wavelength is 10 meters and the velocity is 200 meters per second.
- 1 m/s can also be written as 1 m*s^-1
Therefore:

Substitute the values into the formula.

Divide and note that the meters (m) will cancel each other out.


- 1 s^-1 is equal to Hertz
- Therefore, our answer of 20 s^-1 is equal to 20 Hz

The frequency of the wave is <u>20 Hertz</u>
<span>When the Sun’s energy moves through space, it reaches Earth’s atmosphere and finally the surface. This radiant solar energy warms the atmosphere and becomes heat energy. This heat energy is transferred throughout the planet’s systems in three ways: by radiation, conduction, and convection</span>