Answer:
h = 13.06 m
Explanation:
Given:
- Specific gravity of gasoline S.G = 0.739
- Density of water p_w = 997 kg/m^3
- The atmosphere pressure P_o = 101.325 KPa
- The change in height of the liquid is h m
Find:
How high would the level be in a gasoline barometer at normal atmospheric pressure?
Solution:
- When we consider a barometer setup. We dip the open mouth of an inverted test tube into a pool of fluid. Due to the pressure acting on the free surface of the pool, the fluid starts to rise into the test-tube to a height h.
- The relation with the pressure acting on the free surface and the height to which the fluid travels depends on the density of the fluid and gravitational acceleration as follows:
P = S.G*p_w*g*h
Where, h = P / S.G*p_w*g
- Input the values given:
h = 101.325 KPa / 0.739*9.81*997
h = 13.06 m
- Hence, the gasoline will rise up to the height of 13.06 m under normal atmospheric conditions at sea level.
Answer:
Analysis
Explanation:
Because you must Analysis each and every cold too find out which virus caused this.
It’s weird because Interpretation and Analysis have the meaning of examination
PART a)
here when stone is dropped there is only gravitational force on it
so its acceleration is only due to gravity
so we will have

Part b)
Now from kinematics equation we will have

now we have
y = 25 m
so from above equation


Part c)
If we throw the rock horizontally by speed 20 m/s
then in this case there is no change in the vertical velocity
so it will take same time to reach the water surface as it took initially
So t = 2.26 s
Part D)
Initial speed = 20 m/s
angle of projection = 65 degree
now we have




PART E)
when stone will reach to maximum height then we know that its final speed in y direction becomes zero
so here we can use kinematics in Y direction



so it will take 1.85 s to reach the top
Answer:
Total energy saving will be 0.8 KWH
Explanation:
We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW
30 bulbs are of power 60 W
So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW
Total power of 80 bulbs = 1.8+5 = 6.8 KW
Total time = 3 hour
We know that energy 
Now power of each CFL bulb = 25 W
So power of 80 bulbs = 80×25 = 2000 W = 2 KW
Energy of 80 bulbs = 2×3 = 6 KWH
So total energy saving = 6.8-6 = 0.8 KWH