Answer:
d one is correct
Explanation:
as the electrical energy in the socket is transferred to the electric tea pot
Answer:
See explanation below
Explanation:
In this case, you want to know if you put an object between these forces, which direction would go.
To know this, we need to calculate the moment of an object, which is defined as the product of a force and it's distance. In other words:
M = F * d (1)
And, in order to reach equilibrium the force will exert a direction in clockwise or anticlosewise, and these moments, should be even:
anticlockwise moment = clockwise moment.
The clockwise would be the forces to the right, and anticlock would the only force to the left of the axle.
Clockwise moment = (10 * 0.8) + (25 * 2.6) = 73 Ns
Anticlockwise moment = 34 * 3.5 = 119 Ns.
As we can see, the moment in the anticlockwise is higher than the actual clockwise moment, therefore, we can assume that the object will move anticlockwise, or simply move to the left.
Hope this helps
First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa
Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high
Answer: 6s
Explanation:
Vs=32m/s speed at beginning of slowing down
Vf=0m/s stop speed
a= -6 m/s² acceleration
----------------
Use equation for acceleration :
a=(Vf-Vs)/t
a*t=Vf-Vs
t=(Vf-Vs)/a
t=(0-36)/-6
t=-36/-6
t=6 s