G is the gravitational constant, which is approximately 6.6x10^-11 Nm/s^2. It has the same value regardless of the masses of both objects or the distance between them.
Answer:
9.43 m/s
Explanation:
First of all, we calculate the final kinetic energy of the car.
According to the work-energy theorem, the work done on the car is equal to its change in kinetic energy:

where
W = -36.733 J is the work done on the car (negative because the car is slowing down, so the work is done in the direction opposite to the motion of the car)
is the final kinetic energy
is the initial kinetic energy
Solving,

Now we can find the final speed of the car by using the formula for kinetic energy

where
m = 661 kg is the mass of the car
v is its final speed
Solving for v, we find

Answer:
Explanation:
F = ma
m = F/a
m = 107.2/1.6 = 67 kg
so Naoki's mass must be the total mass - mass of the bike
so her mass is 67 - 9 = 58 kg...B
Answer:
we know that current = charge/time
Explanation:
therefore,
A = 8000/120
A => 66.666.... amperes
Answer:
ummmmmmmmmm through science??