There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?
Superheated water is liquid water under pressure at temperatures between the usual boiling point, 100c (212 F ) and the critical temperature , 374 C (705F) . It is also known as “subcritical water”
Or “pressurized hot water”.
Answer:
the water level remains same
Explanation:
This can be explained by Archimedes's principle which says that the wood will sink if weight of wood is more than the weight of the water displaced with weight equal to the water displaced otherwise the wood will float.
Therefore, buoyancy or the buoyant force is the same as the weight of wood, the weight of the water displaced by wood is also the same as that of the weight of wood.
Thus, we can see that the weight of the wood remains same and so is the level of water.
Hopes this helps:
Answer: Aluminum has 61 percent of the conductivity of copper, but has only 30 percent of the weight of copper. That means that a bare wire of aluminum weights half as much as a bare wire of copper that has the same electrical resistance. Aluminum is generally more inexpensive when compared to copper conductors.
Answer:
b. 0.25cm
Explanation:
You can solve this question by using the formula for the position of the fringes:
m: order of the fringes
lambda: wavelength 500nm
D: distance to the screen 5 m
d: separation of the slits 1mm=1*10^{-3}m
With the formula you can calculate the separation of two adjacent slits:
hence, the aswer is 0.25cm