<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
Gravitational potential energy i think
<span>Actually the second law of thermodynamics would truly gets violated ie, which means that the entrophy changes of the isolated system can never be negative, which covers the above that if heat were to spontaneously flow between any two objects of equal temperature would be fully violated.</span>
<span>If Shelly rolls ball A in the positive x direction with a velocity of 7.5 meters/second, and It hits stationary ball B and they undergo elastic collision, thus the two balls have different masses, then the following statement which is true is the statement that stated that there was no y-momentum initially.</span>
Volcanic islands, Mountain ranges
Explanation:
A convergent margin is plate boundary in which plates comes together. There are different types of interactions that occurs around a place where plate converges.
- An ocean-continent convergence creates a subduction zone in which the denser oceanic plate sinks beneath the less dense continental crust.
- As the oceanic plate begins to subside, it can melt and form chains of volcanic island within the riding continents.
- Also, where two plates of equal densities converge, none of them subsides and this leads to upbuilding.
- The product can be seen as extensive mountain ranges on earth like the Andes and Himalayas.
Learn more:
Descending lithosphere brainly.com/question/9582362
#learnwithBrainly